发光学报, 2015, 36 (2): 141, 网络出版: 2015-02-15   

水热合成碳颗粒的结构和发光性能

Structure and Photoluminescence Properties of Carbon Particles Synthesized by Hydrothermal Method
作者单位
1 重庆理工大学 化学化工学院, 重庆 400054
2 北京工业大学 材料科学与工程学院, 北京 100124
3 重庆师范大学 化学学院, 重庆 401331
4 重庆理工大学 机械工程学院, 重庆 400054
引用该论文

王必本, 朱满康, 汪浩, 李琳, 王毅. 水热合成碳颗粒的结构和发光性能[J]. 发光学报, 2015, 36(2): 141.

WANG Bi-ben, ZHU Man-kang, WANG Hao, LI Lin, WANG Yi. Structure and Photoluminescence Properties of Carbon Particles Synthesized by Hydrothermal Method[J]. Chinese Journal of Luminescence, 2015, 36(2): 141.

参考文献

[1] Yang Z C, Li X, Wang J. Intrinsically fluorescent nitrogen-containing carbon nanoparticles synthesized by a hydrothermal process [J]. Carbon, 2011, 49(15):5207-5212.

[2] Zhou L, Lin Y, Huang Z, et al. Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices [J]. Chem. Commun., 2012, 48(8):1147-1149.

[3] Kumar S, Mehdipour H, Ostrikov K. Plasma-enabled graded nanotube biosensing arrays on a Si nanodevice platform: Catalyst-free integration and in situ detection of nucleation events [J]. Adv. Mater., 2013, 25(1):69-74.

[4] Levchenko I, Volotskova O, Shashurin A, et al. The large-scale production of graphene flakes using magnetically-enhanced arc discharge between carbon electrodes [J]. Carbon, 2010, 48(15):4570-4574.

[5] Cheng Q, Xu S, Long J, et al. Low-temperature PECVD of nanodevice-grade nc-3C-SiC [J]. Chem. Vap. Deposit., 2007, 13(10):561-566.

[6] Sha Y, Lou J, Bai S, et al. Hydrothermal synthesis of nitrogen-containing carbon nanodots as the high-efficient sensor for copper (Ⅱ) ions [J]. Mater. Res. Bull., 2013, 48(4):1728-1731.

[7] Ming H, Ma Z, Liu Y, et al. Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property [J]. Dalton Trans., 2012, 41(31):9526-9531.

[8] Zhou Y, Xing G, Chen H, et al. Carbon nanodots sensitized chemiluminescence on peroxomonosulfate- sulfite-hydrochloric acid system and its analytical applications [J]. Talanta, 2012, 99:471-477.

[9] Iwano Y, Kittaka T, Tabuchi H, et al. Study of amorphous carbon nitride films aiming at white light emitting devices [J]. Jpn. J. Appl. Phys., 2008, 47(10):7842-7844.

[10] Titirici M M, Antonietti M, Baccile N. Hydrothermal carbon from biomass: A comparison of the local structure from poly- to monosaccharides and pentoses/hexoses [J]. Green Chem., 2008, 10(11):1204-1212.

[11] Casiraghi C, Ferrari A C, Robertson J. Raman spectroscopy of hydrogenated amorphous carbons [J]. Phys. Rev. B, 2005, 72(8):085401-1-14.

[12] Casiraghi C, Ferrari A C, Robertson J, et al. Ultra-thin carbon layer for high density magnetic storage devices [J]. Diam. Relat. Mater., 2004, 13(4-8):1480-1485.

[13] Hu A, Duley W W. 16-20 μm spectra of carbon nanoparticles [J]. Astrophys. J., 2008, 672(1):L81-L83.

[14] Sukanya S L, Sudisha J, Prakash H S, et al. Isolation and characterization of antimicrobial compound from Chromolaena odorata [J]. J. Phytol., 2011, 3(10):26-32.

[15] Chu P K, Li L. Characterization of amorphous and nanocrystalline carbon films [J]. Mater. Chem. Phys., 2006, 96(2-3):253-277.

[16] Udhayakala P, Jayanthi A, Rajendiran T V, et al. Computation and interpretation of vibrational spectra, thermodynamical and HOMO-LUMO analysis of 2-chloro-4-nitroaniline [J]. Int. J. Chem. Tech. Res., 2011, 3(4):1851-1862.

[17] Fuente E, Menendez A J, Diez M A, et al. Infrared spectroscopy of carbon materials: A quantum chemical study of model compounds [J]. J. Phys. Chem. B, 2003, 107(26):6350-6359.

[18] Liao M, Feng Z, Yang S, et al. Anomalous temperature dependence of photoluminescence from a-C∶H film deposited by energetic hydrocarbon ion beam [J]. Solid State Commun., 2002, 121(5):287-290.

[19] Gan Z, Xiong S, Wu X, et al. Mechanism of photoluminescence from chemically derived graphene oxide: Role of chemical reduction [J]. Adv. Optical Mater., 2013, 1(12):926-932.

[20] Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics [J]. Nat. Photon., 2010, 4(9): 611-622.

[21] Füle M, Budai J, Toth S, et al. Size of spatial confinement at luminescence centers determined from resonant excitation bands of a-C∶H photoluminescence [J]. J. Non-Cryst. Solids, 2006, 352(9-20):1340-1343.

[22] Papadimitriou D, Roupakas G, Xue C, et al. Raman and photoluminescence study of magnetron sputtered amorphous carbon films [J]. Thin Solid Films, 2002, 414(1):18-24.

[23] Tuinstra F, Koenig J L. Raman spectrum of graphite [J]. J. Chem. Phys., 1970, 53(3):1126-1130.

[24] Silva S R P, Robertson J, Amaratunga G A J, et al. Nitrogen modification of hydrogenated amorphous carbon films [J]. J. Appl. Phys., 1997, 81(6):2626-2634.

[25] Fanchini G, Tagliaferro A, Conway N M J, et al. Role of lone-pair interactions and local disorder in determining the interdependency of optical constants of a-CN∶H thin films [J]. Phys. Rev. B, 2002, 66(19):195415-1-9.

[26] Souto S, Pickholz M, Santos M C, et al. Electronic structure of nitrogen-carbon alloys (a-CNx) determined by photoelectron spectroscopy [J]. Phys. Rev. B, 1998, 57(4):2536-2540.

[27] Fanchini G, Messina G, Paoletti A, et al. Relationship between composition and position of Raman and IR peaks in amorphous carbon alloys [J]. Surf. Coat. Technol., 2002, 151-152:257-262.

[28] Chien C T, Li S S, Lai W J, et al. Tunable photoluminescence from graphene oxide [J]. Angew. Chem. Int. Ed., 2012, 51(27):6662-6666.

[29] Luo Z, Vora P M, Mele E J, et al. Photoluminescence and band gap modulation in graphene oxide [J]. Appl. Phys. Lett., 2009, 94(11):111909-1-3.

王必本, 朱满康, 汪浩, 李琳, 王毅. 水热合成碳颗粒的结构和发光性能[J]. 发光学报, 2015, 36(2): 141. WANG Bi-ben, ZHU Man-kang, WANG Hao, LI Lin, WANG Yi. Structure and Photoluminescence Properties of Carbon Particles Synthesized by Hydrothermal Method[J]. Chinese Journal of Luminescence, 2015, 36(2): 141.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!