发光学报, 2015, 36 (2): 141, 网络出版: 2015-02-15   

水热合成碳颗粒的结构和发光性能

Structure and Photoluminescence Properties of Carbon Particles Synthesized by Hydrothermal Method
作者单位
1 重庆理工大学 化学化工学院, 重庆 400054
2 北京工业大学 材料科学与工程学院, 北京 100124
3 重庆师范大学 化学学院, 重庆 401331
4 重庆理工大学 机械工程学院, 重庆 400054
摘要
用生物试剂氨基葡萄糖盐酸盐和葡萄糖在水溶液中合成了碳颗粒, 用场发射扫描电子显微镜、高分辨透射电子显微镜、显微Raman光谱仪和傅立叶红外光谱仪对样品的结构和组成进行了研究。结果表明, 碳颗粒是球形非晶结构, 直径为0.3~1.4 μm。利用He-Cd激光器的325 nm线, 在显微Raman 光谱仪中对碳颗粒的光致发光(PL)性能进行了研究。光谱显示出中心在420 nm的弱的蓝色PL带、中心在575 nm和650 nm的强而宽的绿光和红光PL带, 它们分别与官能团和带与带之间的跃迁有关。绿光和红光PL带的宽化与sp2碳颗粒的非均匀性有关。
Abstract
Carbon particles were synthesized in aqueous solution of the biological reagents D-(+)-glucosamine-HCl and glucose. The structure and composition of synthesized carbon particles were investigated using field emission scanning electron microscope, high-resolution transmission electron microscope, micro-Raman spectroscope and Fourier transform infrared spectroscope. The results indicate that the carbon particles are formed in the spherical shape and amorphous structure with diameter of 0.3-1.4 μm. The photoluminescence (PL) of carbon particles were studied in micro-Raman spectroscopy using the 325 nm line of He-Cd laser. The PL spectra show a weak blue PL band centered at 420 nm and two strong and wide green and red PL bands centered at 575 and 650 nm, which are related to the functional groups and the transition between two bands. The broadening of green and red PL bands is related to the diversity of sp2 clusters.
参考文献

[1] Yang Z C, Li X, Wang J. Intrinsically fluorescent nitrogen-containing carbon nanoparticles synthesized by a hydrothermal process [J]. Carbon, 2011, 49(15):5207-5212.

[2] Zhou L, Lin Y, Huang Z, et al. Carbon nanodots as fluorescence probes for rapid, sensitive, and label-free detection of Hg2+ and biothiols in complex matrices [J]. Chem. Commun., 2012, 48(8):1147-1149.

[3] Kumar S, Mehdipour H, Ostrikov K. Plasma-enabled graded nanotube biosensing arrays on a Si nanodevice platform: Catalyst-free integration and in situ detection of nucleation events [J]. Adv. Mater., 2013, 25(1):69-74.

[4] Levchenko I, Volotskova O, Shashurin A, et al. The large-scale production of graphene flakes using magnetically-enhanced arc discharge between carbon electrodes [J]. Carbon, 2010, 48(15):4570-4574.

[5] Cheng Q, Xu S, Long J, et al. Low-temperature PECVD of nanodevice-grade nc-3C-SiC [J]. Chem. Vap. Deposit., 2007, 13(10):561-566.

[6] Sha Y, Lou J, Bai S, et al. Hydrothermal synthesis of nitrogen-containing carbon nanodots as the high-efficient sensor for copper (Ⅱ) ions [J]. Mater. Res. Bull., 2013, 48(4):1728-1731.

[7] Ming H, Ma Z, Liu Y, et al. Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property [J]. Dalton Trans., 2012, 41(31):9526-9531.

[8] Zhou Y, Xing G, Chen H, et al. Carbon nanodots sensitized chemiluminescence on peroxomonosulfate- sulfite-hydrochloric acid system and its analytical applications [J]. Talanta, 2012, 99:471-477.

[9] Iwano Y, Kittaka T, Tabuchi H, et al. Study of amorphous carbon nitride films aiming at white light emitting devices [J]. Jpn. J. Appl. Phys., 2008, 47(10):7842-7844.

[10] Titirici M M, Antonietti M, Baccile N. Hydrothermal carbon from biomass: A comparison of the local structure from poly- to monosaccharides and pentoses/hexoses [J]. Green Chem., 2008, 10(11):1204-1212.

[11] Casiraghi C, Ferrari A C, Robertson J. Raman spectroscopy of hydrogenated amorphous carbons [J]. Phys. Rev. B, 2005, 72(8):085401-1-14.

[12] Casiraghi C, Ferrari A C, Robertson J, et al. Ultra-thin carbon layer for high density magnetic storage devices [J]. Diam. Relat. Mater., 2004, 13(4-8):1480-1485.

[13] Hu A, Duley W W. 16-20 μm spectra of carbon nanoparticles [J]. Astrophys. J., 2008, 672(1):L81-L83.

[14] Sukanya S L, Sudisha J, Prakash H S, et al. Isolation and characterization of antimicrobial compound from Chromolaena odorata [J]. J. Phytol., 2011, 3(10):26-32.

[15] Chu P K, Li L. Characterization of amorphous and nanocrystalline carbon films [J]. Mater. Chem. Phys., 2006, 96(2-3):253-277.

[16] Udhayakala P, Jayanthi A, Rajendiran T V, et al. Computation and interpretation of vibrational spectra, thermodynamical and HOMO-LUMO analysis of 2-chloro-4-nitroaniline [J]. Int. J. Chem. Tech. Res., 2011, 3(4):1851-1862.

[17] Fuente E, Menendez A J, Diez M A, et al. Infrared spectroscopy of carbon materials: A quantum chemical study of model compounds [J]. J. Phys. Chem. B, 2003, 107(26):6350-6359.

[18] Liao M, Feng Z, Yang S, et al. Anomalous temperature dependence of photoluminescence from a-C∶H film deposited by energetic hydrocarbon ion beam [J]. Solid State Commun., 2002, 121(5):287-290.

[19] Gan Z, Xiong S, Wu X, et al. Mechanism of photoluminescence from chemically derived graphene oxide: Role of chemical reduction [J]. Adv. Optical Mater., 2013, 1(12):926-932.

[20] Bonaccorso F, Sun Z, Hasan T, et al. Graphene photonics and optoelectronics [J]. Nat. Photon., 2010, 4(9): 611-622.

[21] Füle M, Budai J, Toth S, et al. Size of spatial confinement at luminescence centers determined from resonant excitation bands of a-C∶H photoluminescence [J]. J. Non-Cryst. Solids, 2006, 352(9-20):1340-1343.

[22] Papadimitriou D, Roupakas G, Xue C, et al. Raman and photoluminescence study of magnetron sputtered amorphous carbon films [J]. Thin Solid Films, 2002, 414(1):18-24.

[23] Tuinstra F, Koenig J L. Raman spectrum of graphite [J]. J. Chem. Phys., 1970, 53(3):1126-1130.

[24] Silva S R P, Robertson J, Amaratunga G A J, et al. Nitrogen modification of hydrogenated amorphous carbon films [J]. J. Appl. Phys., 1997, 81(6):2626-2634.

[25] Fanchini G, Tagliaferro A, Conway N M J, et al. Role of lone-pair interactions and local disorder in determining the interdependency of optical constants of a-CN∶H thin films [J]. Phys. Rev. B, 2002, 66(19):195415-1-9.

[26] Souto S, Pickholz M, Santos M C, et al. Electronic structure of nitrogen-carbon alloys (a-CNx) determined by photoelectron spectroscopy [J]. Phys. Rev. B, 1998, 57(4):2536-2540.

[27] Fanchini G, Messina G, Paoletti A, et al. Relationship between composition and position of Raman and IR peaks in amorphous carbon alloys [J]. Surf. Coat. Technol., 2002, 151-152:257-262.

[28] Chien C T, Li S S, Lai W J, et al. Tunable photoluminescence from graphene oxide [J]. Angew. Chem. Int. Ed., 2012, 51(27):6662-6666.

[29] Luo Z, Vora P M, Mele E J, et al. Photoluminescence and band gap modulation in graphene oxide [J]. Appl. Phys. Lett., 2009, 94(11):111909-1-3.

王必本, 朱满康, 汪浩, 李琳, 王毅. 水热合成碳颗粒的结构和发光性能[J]. 发光学报, 2015, 36(2): 141. WANG Bi-ben, ZHU Man-kang, WANG Hao, LI Lin, WANG Yi. Structure and Photoluminescence Properties of Carbon Particles Synthesized by Hydrothermal Method[J]. Chinese Journal of Luminescence, 2015, 36(2): 141.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!