液晶与显示, 2020, 35 (7): 685, 网络出版: 2020-10-27   

蓝相液晶晶体结构与结构色

Crystal structures and structural colors of blue phase liquid crystals
作者单位
南方科技大学 电子与电气工程系, 广东 深圳 518055
摘要
蓝相液晶具有许多不同寻常的光学特性, 如快速的响应速度(亚毫秒量级), 可见光范围的布拉格反射, 光学各向同性等。这些特性使得蓝相液晶在电光器件领域有着广泛的应用前景。近年来, 除显示领域以外, 蓝相液晶在聚合物蓝相液晶薄膜、晶格结构、结构色, 以及可调谐方面取得了一系列新的进展。这些进展不仅深化了人们对蓝相液晶制备和基本结构认知, 同时也极大扩展了其应用范围。本文侧重阐述近年来蓝相液晶在晶格结构以及结构色方面的研究进展。首先介绍蓝相液晶薄膜的制备方法和进展; 其次介绍蓝相液晶晶格结构, 包括单畴晶格、单晶晶格和结构色方面的研究进展; 最后介绍可调谐的蓝相液晶晶格结构, 主要包括电场、光场对蓝相晶格的调控作用。
Abstract
Blue phase liquid crystals possess several extraordinary optical properties, such as fast response time (sub-milliseconds), Bragg reflection in visible range, optical isotropic property. These properties make blue phase liquid crystals have a good application in electro-optical devices. Besides of displays, blue phase liquid crystals demonstrate series of new developments in polymer-stabilized blue phase film, crystal lattice structure, structural color and tunable application recently. These developments not only deepen cognitions in fabrication and basic structure of blue phase liquid crystals, and also broaden the applications of blue phase liquid crystals at the meantime. In this review, we discuss about the research developments of crystal lattice structure and structural color in blue phase liquid crystals in recent years. First, the fabrication and development of blue phase liquid crystals are introduced. Then, the recent developments of crystal lattice structure, including monodomain crystal, single crystal and structural color of blue phase liquid crystals are demonstrated. Last, the tunable crystal structure of blue phase liquid crystal, such as the effects of electric field and optical field on blue phase liquid crystals are shown.
参考文献

[1] REINITZER F. Beitrge zur kenntniss des cholesterins [J]. Monatsh. Chem., 1888, 9(1): 421-441.

    REINITZER F. Beitrge zur kenntniss des cholesterins [J]. Monatsh. Chem., 1888, 9(1): 421-441.

[2] LEHMANN O. Substances with three different liquid states, one isotrope-and two crystalline fluids [J]. Z. Phys. Chem., 1906, 56(6): 750-766.

    LEHMANN O. Substances with three different liquid states, one isotrope-and two crystalline fluids [J]. Z. Phys. Chem., 1906, 56(6): 750-766.

[3] COATES D, HARRISON K J, GRAY G W. Studies of mesophase transformations for certain Schiff’s base esters [J]. Mol. Cryst. Liq. Cryst., 1973, 22(1/2): 99-122.

    COATES D, HARRISON K J, GRAY G W. Studies of mesophase transformations for certain Schiff’s base esters [J]. Mol. Cryst. Liq. Cryst., 1973, 22(1/2): 99-122.

[4] ELSER W, POHLMANN J L W, BOYD P R. Cholesteryl n-alkyl carbonates [J]. Mol. Cryst. Liq. Cryst., 1973, 20(1): 77-86.

    ELSER W, POHLMANN J L W, BOYD P R. Cholesteryl n-alkyl carbonates [J]. Mol. Cryst. Liq. Cryst., 1973, 20(1): 77-86.

[5] MARCUS M A, GOODBY J W. Cholesteric pitch and blue phases in a chiral-racemic mixture [J]. Mol. Cryst. Liq. Cryst., 1982, 72(9/10): 297-305.

    MARCUS M A, GOODBY J W. Cholesteric pitch and blue phases in a chiral-racemic mixture [J]. Mol. Cryst. Liq. Cryst., 1982, 72(9/10): 297-305.

[6] NICASTRO A J, KEYES P H. Cholesteric blue phases of the cholesteryl N-alkanoates [J]. Phys. Rev. A, 1983, 27(1): 431-437.

    NICASTRO A J, KEYES P H. Cholesteric blue phases of the cholesteryl N-alkanoates [J]. Phys. Rev. A, 1983, 27(1): 431-437.

[7] CHANISHVILI A, CHILAYA G, ELASHVILI Z M, et al. A wide-temperature blue phase in mixtures of a nematic liquid crystal with non-mesogenic tigogenin caprate [J]. Mol. Cryst. Liq. Cryst. Lett., 1986, 3(3/4): 91-96.

    CHANISHVILI A, CHILAYA G, ELASHVILI Z M, et al. A wide-temperature blue phase in mixtures of a nematic liquid crystal with non-mesogenic tigogenin caprate [J]. Mol. Cryst. Liq. Cryst. Lett., 1986, 3(3/4): 91-96.

[8] KEYES P H. Is blue phase II fcc? [J]. Phys. Rev. Lett., 1987, 59(1): 83-85.

    KEYES P H. Is blue phase II fcc? [J]. Phys. Rev. Lett., 1987, 59(1): 83-85.

[9] YANG D K, CROOKER P P. Chiral-racemic phase diagrams of blue-phase liquid crystals [J]. Phys. Rev. A, 1987, 35(10): 4419-4423.

    YANG D K, CROOKER P P. Chiral-racemic phase diagrams of blue-phase liquid crystals [J]. Phys. Rev. A, 1987, 35(10): 4419-4423.

[10] DEMIKHOV E I, DOLGANOV V K. Pretransitional effects near blue phases of a cholesteric liquid crystal [J]. JETP Lett., 1983, 38(8): 445-447.

    DEMIKHOV E I, DOLGANOV V K. Pretransitional effects near blue phases of a cholesteric liquid crystal [J]. JETP Lett., 1983, 38(8): 445-447.

[11] DEMIKHOV E I, DOLGANOV V K, KRYLOVA S P. Selective optical reflection in the fog phase [J]. JETP Lett., 1985, 42(1): 16-19.

    DEMIKHOV E I, DOLGANOV V K, KRYLOVA S P. Selective optical reflection in the fog phase [J]. JETP Lett., 1985, 42(1): 16-19.

[12] KIZEL V A, PROKHOROV V V. Structure of blue phase of cholesteric liquid crystals [J]. JETP Lett., 1984, 38(6): 337-341.

    KIZEL V A, PROKHOROV V V. Structure of blue phase of cholesteric liquid crystals [J]. JETP Lett., 1984, 38(6): 337-341.

[13] COLLINGS P J. Optical rotatory dispersion measurements in the third cholesteric blue phase [J]. Phys. Rev. A, 1984, 30(4): 1990-1993.

    COLLINGS P J. Optical rotatory dispersion measurements in the third cholesteric blue phase [J]. Phys. Rev. A, 1984, 30(4): 1990-1993.

[14] YANG D K, CROOKER P P. Blue phase III of chiral liquid crystals in an electric field [J]. Phys. Rev. A, 1988, 37(10): 4001-4005.

    YANG D K, CROOKER P P. Blue phase III of chiral liquid crystals in an electric field [J]. Phys. Rev. A, 1988, 37(10): 4001-4005.

[15] JOHNSON D L, FLACK J H, CROOKER P P. Structure and properties of the cholesteric blue phases [J]. Phys. Rev. Lett., 1980, 45(8): 641-644.

    JOHNSON D L, FLACK J H, CROOKER P P. Structure and properties of the cholesteric blue phases [J]. Phys. Rev. Lett., 1980, 45(8): 641-644.

[16] COATES D, GRAY G W. Optical studies of the amorphous liquid-cholesteric liquid crystal transition: the “blue phase” [J]. Phys. Lett. A, 1973, 45(2): 115-116.

    COATES D, GRAY G W. Optical studies of the amorphous liquid-cholesteric liquid crystal transition: the “blue phase” [J]. Phys. Lett. A, 1973, 45(2): 115-116.

[17] MEIBOOM S, SAMMON M. Structure of the blue phase of a cholesteric liquid crystal [J]. Phys. Rev. Lett., 1980, 44(13): 882-885.

    MEIBOOM S, SAMMON M. Structure of the blue phase of a cholesteric liquid crystal [J]. Phys. Rev. Lett., 1980, 44(13): 882-885.

[18] TANIMOTO K, CROOKER P P, KOCH G C. Chiral-racemic phase diagram of a blue-phase liquid crystal [J]. Phys. Rev. A, 1985, 32(3): 1893-1895.

    TANIMOTO K, CROOKER P P, KOCH G C. Chiral-racemic phase diagram of a blue-phase liquid crystal [J]. Phys. Rev. A, 1985, 32(3): 1893-1895.

[19] TANAKA S, YOSHIDA H, KAWATA Y, et al. Double-twist cylinders in liquid crystalline cholesteric blue phases observed by transmission electron microscopy [J]. Sci. Rep., 2015, 5(1): 16180.

    TANAKA S, YOSHIDA H, KAWATA Y, et al. Double-twist cylinders in liquid crystalline cholesteric blue phases observed by transmission electron microscopy [J]. Sci. Rep., 2015, 5(1): 16180.

[20] SALAMON'CZYK M, VAUPOTI N, POCIECHA D, et al. Structure of nanoscale-pitch helical phases: blue phase and twist-bend nematic phase resolved by resonant soft X-ray scattering [J]. Soft Matter, 2017, 13(38): 6694-6699.

    SALAMON'CZYK M, VAUPOTI N, POCIECHA D, et al. Structure of nanoscale-pitch helical phases: blue phase and twist-bend nematic phase resolved by resonant soft X-ray scattering [J]. Soft Matter, 2017, 13(38): 6694-6699.

[21] XIANG J, LAVRENTOVICH O D. Blue-phase-polymer-templated nematic with sub-millisecond broad-temperature range electro-optic switching [J]. Appl. Phys. Lett., 2013, 103(5): 051112.

    XIANG J, LAVRENTOVICH O D. Blue-phase-polymer-templated nematic with sub-millisecond broad-temperature range electro-optic switching [J]. Appl. Phys. Lett., 2013, 103(5): 051112.

[22] RAO L H, YAN J, WU S T, et al. A large Kerr constant polymer-stabilized blue phase liquid crystal [J]. Appl. Phys. Lett., 2011, 98(8): 081109.

    RAO L H, YAN J, WU S T, et al. A large Kerr constant polymer-stabilized blue phase liquid crystal [J]. Appl. Phys. Lett., 2011, 98(8): 081109.

[23] KIZHAKIDATHAZHATH R, HIGUCHI H, OKUMURA Y, et al. Weak anchoring interface inducing acrylate copolymer designs for high-performance polymer-stabilized blue phase liquid crystal displays [J]. Chem. Select, 2017, 2(23): 6728-6731.

    KIZHAKIDATHAZHATH R, HIGUCHI H, OKUMURA Y, et al. Weak anchoring interface inducing acrylate copolymer designs for high-performance polymer-stabilized blue phase liquid crystal displays [J]. Chem. Select, 2017, 2(23): 6728-6731.

[24] HISAKADO Y, KIKUCHI H, NAGAMURA T, et al. Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases [J]. Adv. Mater., 2005, 17(1): 96-98.

    HISAKADO Y, KIKUCHI H, NAGAMURA T, et al. Large electro-optic Kerr effect in polymer-stabilized liquid-crystalline blue phases [J]. Adv. Mater., 2005, 17(1): 96-98.

[25] YAN J, LUO Z Y, WU S T, et al. Low voltage and high contrast blue phase liquid crystal with red-shifted Bragg reflection [J]. Appl. Phys. Lett., 2013, 102(1): 011113.

    YAN J, LUO Z Y, WU S T, et al. Low voltage and high contrast blue phase liquid crystal with red-shifted Bragg reflection [J]. Appl. Phys. Lett., 2013, 102(1): 011113.

[26] XU D M, CHEN Y, LIU Y F, et al. Refraction effect in an in-plane-switching blue phase liquid crystal cell [J]. Opt. Express, 2013, 21(21): 24721-24735.

    XU D M, CHEN Y, LIU Y F, et al. Refraction effect in an in-plane-switching blue phase liquid crystal cell [J]. Opt. Express, 2013, 21(21): 24721-24735.

[27] NORDENDORF G, SCHMIDTKE J, WILKES D, et al. Temperature-insensitive electro-optic response of polymer-stabilized blue phases [J]. J. Mater. Chem. C, 2017, 5(3): 518-521.

    NORDENDORF G, SCHMIDTKE J, WILKES D, et al. Temperature-insensitive electro-optic response of polymer-stabilized blue phases [J]. J. Mater. Chem. C, 2017, 5(3): 518-521.

[28] YAN J, XU D M, CHENG H C, et al. Turning film for widening the viewing angle of a blue phase liquid crystal display [J]. Appl. Opt., 2013, 52(36): 8840-8844.

    YAN J, XU D M, CHENG H C, et al. Turning film for widening the viewing angle of a blue phase liquid crystal display [J]. Appl. Opt., 2013, 52(36): 8840-8844.

[29] LIN Y H, CHEN H S, CHIANG T H, et al. A reflective polarizer-free electro-optical switch using dye-doped polymer-stabilized blue phase liquid crystals [J]. Opt. Express, 2011, 19(3): 2556-2561.

    LIN Y H, CHEN H S, CHIANG T H, et al. A reflective polarizer-free electro-optical switch using dye-doped polymer-stabilized blue phase liquid crystals [J]. Opt. Express, 2011, 19(3): 2556-2561.

[30] LIU Y F, LAN Y F, HONG Q, et al. Compensation film designs for high contrast wide-view blue phase liquid crystal displays [J]. J. Disp. Technol., 2014, 10(1): 3-6.

    LIU Y F, LAN Y F, HONG Q, et al. Compensation film designs for high contrast wide-view blue phase liquid crystal displays [J]. J. Disp. Technol., 2014, 10(1): 3-6.

[31] LI P, SUN Y B, ZHAO Y L, et al. High transmittance blue-phase liquid crystal displays with slit-shaped electrode [J]. Liq. Cryst., 2013, 40(10): 1417-1421.

    LI P, SUN Y B, ZHAO Y L, et al. High transmittance blue-phase liquid crystal displays with slit-shaped electrode [J]. Liq. Cryst., 2013, 40(10): 1417-1421.

[32] SU Z F, CHEN Y Q, LU J G, et al. High-transmittance polymer-stabilised blue-phase liquid crystal display with double-sided protrusion electrodes [J]. Liq. Cryst., 2013, 40(7): 976-979.

    SU Z F, CHEN Y Q, LU J G, et al. High-transmittance polymer-stabilised blue-phase liquid crystal display with double-sided protrusion electrodes [J]. Liq. Cryst., 2013, 40(7): 976-979.

[33] CUI J P, LI Y, YAN J, et al. Time-multiplexed dual-view display using a blue phase liquid crystal [J]. J. Disp. Technol., 2013, 9(2): 87-90.

    CUI J P, LI Y, YAN J, et al. Time-multiplexed dual-view display using a blue phase liquid crystal [J]. J. Disp. Technol., 2013, 9(2): 87-90.

[34] YAN J, XING Y F, GUO Z B, et al. Low voltage and high resolution phase modulator based on blue phase liquid crystals with external compact optical system [J]. Opt. Express, 2015, 23(12): 15256-15264.

    YAN J, XING Y F, GUO Z B, et al. Low voltage and high resolution phase modulator based on blue phase liquid crystals with external compact optical system [J]. Opt. Express, 2015, 23(12): 15256-15264.

[35] YOSHIDA H, KOBASHI J. Flat optics with cholesteric and blue phase liquid crystals [J]. Liq. Cryst., 2016, 43(13/15): 1909-1919.

    YOSHIDA H, KOBASHI J. Flat optics with cholesteric and blue phase liquid crystals [J]. Liq. Cryst., 2016, 43(13/15): 1909-1919.

[36] ZHU G, WEI B Y, SHI L Y, et al. A fast response variable optical attenuator based on blue phase liquid crystal [J]. Opt. Express, 2013, 21(5): 5332-5337.

    ZHU G, WEI B Y, SHI L Y, et al. A fast response variable optical attenuator based on blue phase liquid crystal [J]. Opt. Express, 2013, 21(5): 5332-5337.

[37] WAHLE M, BRASSAT K, EBEL J, et al. Two-dimensional switchable blue phase gratings manufactured by nanosphere lithography [J]. Opt. Express, 2017, 25(19): 22608-22619.

    WAHLE M, BRASSAT K, EBEL J, et al. Two-dimensional switchable blue phase gratings manufactured by nanosphere lithography [J]. Opt. Express, 2017, 25(19): 22608-22619.

[38] KHOO I C. DC-field-assisted grating formation and nonlinear diffractions in methyl-red dye-doped blue phase liquid crystals [J]. Opt. Lett., 2015, 40(1): 60-63.

    KHOO I C. DC-field-assisted grating formation and nonlinear diffractions in methyl-red dye-doped blue phase liquid crystals [J]. Opt. Lett., 2015, 40(1): 60-63.

[39] YAN J, LI Q, HU K. Polarization independent blue phase liquid crystal gratings based on periodic polymer slices structure [J]. J. Appl. Phys., 2013, 114(15): 153104.

    YAN J, LI Q, HU K. Polarization independent blue phase liquid crystal gratings based on periodic polymer slices structure [J]. J. Appl. Phys., 2013, 114(15): 153104.

[40] LUO D, DAI H T, SUN X W. Polarization-independent electrically tunable/switchable Airy beam based on polymer-stabilized blue phase liquid crystal [J]. Opt. Express, 2013, 21(25): 31318-31323.

    LUO D, DAI H T, SUN X W. Polarization-independent electrically tunable/switchable Airy beam based on polymer-stabilized blue phase liquid crystal [J]. Opt. Express, 2013, 21(25): 31318-31323.

[41] HUANG B Y, LIN S H, LIN K C, et al. Switchable two-dimensional liquid crystal grating in blue phase [J]. Crystals, 2017, 7(6): 182.

    HUANG B Y, LIN S H, LIN K C, et al. Switchable two-dimensional liquid crystal grating in blue phase [J]. Crystals, 2017, 7(6): 182.

[42] HONG H. Analysis of focal length of blue-phase liquid crystal (BPLC) cylindrical lens for the light of the various incident angles and polarisations [J]. Liq. Cryst., 2013, 40(4): 450-457.

    HONG H. Analysis of focal length of blue-phase liquid crystal (BPLC) cylindrical lens for the light of the various incident angles and polarisations [J]. Liq. Cryst., 2013, 40(4): 450-457.

[43] LIN Y H, CHEN H S, LIN H C, et al. Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals [J]. Appl. Phys. Lett., 2010, 96(11): 113505.

    LIN Y H, CHEN H S, LIN H C, et al. Polarizer-free and fast response microlens arrays using polymer-stabilized blue phase liquid crystals [J]. Appl. Phys. Lett., 2010, 96(11): 113505.

[44] LI Y, WU S T. Polarization independent adaptive microlens with a blue-phase liquid crystal [J]. Opt. Express, 2011, 19(9): 8045-8050.

    LI Y, WU S T. Polarization independent adaptive microlens with a blue-phase liquid crystal [J]. Opt. Express, 2011, 19(9): 8045-8050.

[45] LI Y, LIU Y F, LI Q, et al. Polarization independent blue-phase liquid crystal cylindrical lens with a resistive film [J]. Appl. Opt., 2012, 51(14): 2568-2572.

    LI Y, LIU Y F, LI Q, et al. Polarization independent blue-phase liquid crystal cylindrical lens with a resistive film [J]. Appl. Opt., 2012, 51(14): 2568-2572.

[46] LIU Y F, LI Y, WU S T. Polarization-independent adaptive lens with two different blue-phase liquid-crystal layers [J]. Appl. Opt., 2013, 52(14): 3216-3220.

    LIU Y F, LI Y, WU S T. Polarization-independent adaptive lens with two different blue-phase liquid-crystal layers [J]. Appl. Opt., 2013, 52(14): 3216-3220.

[47] LIN S H, HUANG L S, LIN C H, et al. Polarization-independent and fast tunable microlens array based on blue phase liquid crystals [J]. Opt. Express, 2014, 22(1): 925-930.

    LIN S H, HUANG L S, LIN C H, et al. Polarization-independent and fast tunable microlens array based on blue phase liquid crystals [J]. Opt. Express, 2014, 22(1): 925-930.

[48] KIM K, HUR S T, KIM S, et al. A well-aligned simple cubic blue phase for a liquid crystal laser [J]. J. Mater. Chem. C, 2015, 3(21): 5383-5388.

    KIM K, HUR S T, KIM S, et al. A well-aligned simple cubic blue phase for a liquid crystal laser [J]. J. Mater. Chem. C, 2015, 3(21): 5383-5388.

[49] ZHUO G Y, HUANG S W, LIN S H. Wide-angle lasing from photonic crystal nanostructures of a liquid-crystalline blue phase [J]. J. Mater. Chem. C, 2019, 7(21): 6433-6439.

    ZHUO G Y, HUANG S W, LIN S H. Wide-angle lasing from photonic crystal nanostructures of a liquid-crystalline blue phase [J]. J. Mater. Chem. C, 2019, 7(21): 6433-6439.

[50] LIN J D, WANG T Y, MO T S, et al. Wide-band spatially tunable photonic bandgap in visible spectral range and laser based on a polymer stabilized blue phase [J]. Sci. Rep., 2016, 6(1): 30407.

    LIN J D, WANG T Y, MO T S, et al. Wide-band spatially tunable photonic bandgap in visible spectral range and laser based on a polymer stabilized blue phase [J]. Sci. Rep., 2016, 6(1): 30407.

[51] WANG L, WANG M, YANG M C, et al. Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization [J]. Chin. Phys. B, 2016, 25(9): 094217.

    WANG L, WANG M, YANG M C, et al. Bichromatic coherent random lasing from dye-doped polymer stabilized blue phase liquid crystals controlled by pump light polarization [J]. Chin. Phys. B, 2016, 25(9): 094217.

[52] LAVRI M, CORDOYIANNIS G, TZITZIOS V, et al. Blue phase stabilization by CoPt-decorated reduced-graphene oxide nanosheets dispersed in a chiral liquid crystal [J]. J. Appl. Phys., 2020, 127(9): 095101.

    LAVRI M, CORDOYIANNIS G, TZITZIOS V, et al. Blue phase stabilization by CoPt-decorated reduced-graphene oxide nanosheets dispersed in a chiral liquid crystal [J]. J. Appl. Phys., 2020, 127(9): 095101.

[53] JEONG H C, LE K V, GIM M J, et al. Transition between widened BPs by light irradiation using photo-active bent-core liquid crystal with chiral dopant [J]. J. Mater. Chem., 2012, 22(11): 4627-4630.

    JEONG H C, LE K V, GIM M J, et al. Transition between widened BPs by light irradiation using photo-active bent-core liquid crystal with chiral dopant [J]. J. Mater. Chem., 2012, 22(11): 4627-4630.

[54] LIU H P, SHEN D, WANG X Q, et al. Wide blue phase range induced by bent-shaped molecules with acrylate end groups [J]. Opt. Mater. Express, 2016, 6(2): 436-443.

    LIU H P, SHEN D, WANG X Q, et al. Wide blue phase range induced by bent-shaped molecules with acrylate end groups [J]. Opt. Mater. Express, 2016, 6(2): 436-443.

[55] COLES H J, PIVNENKO M N. Liquid crystal ‘blue phases’ with a wide temperature range [J]. Nature, 2005, 436(7053): 997-1000.

    COLES H J, PIVNENKO M N. Liquid crystal ‘blue phases’ with a wide temperature range [J]. Nature, 2005, 436(7053): 997-1000.

[56] KIKUCHI H, YOKOTA M, HISAKADO Y, et al. Polymer-stabilized liquid crystal blue phases [J]. Nat. Mater., 2002, 1(1): 64-68.

    KIKUCHI H, YOKOTA M, HISAKADO Y, et al. Polymer-stabilized liquid crystal blue phases [J]. Nat. Mater., 2002, 1(1): 64-68.

[57] ENDO N, MATSUMOTO T, KIKUCHI H, et al. Study of polymer-stabilised blue phase liquid crystal on a single substrate [J]. Liq. Cryst., 2016, 43(1): 66-76.

    ENDO N, MATSUMOTO T, KIKUCHI H, et al. Study of polymer-stabilised blue phase liquid crystal on a single substrate [J]. Liq. Cryst., 2016, 43(1): 66-76.

[58] KIKUCHI H, IZENA S, HIGUCHI H, et al. A giant polymer lattice in a polymer-stabilized blue phase liquid crystal [J]. Soft Matter, 2015, 11(23): 4572-4575.

    KIKUCHI H, IZENA S, HIGUCHI H, et al. A giant polymer lattice in a polymer-stabilized blue phase liquid crystal [J]. Soft Matter, 2015, 11(23): 4572-4575.

[59] MANDA R, KIM M S, SHIN E J, et al. Phase stabilisation of blue-phase liquid crystals using a polymerisable chiral additive [J]. Liq. Cryst., 2017, 44(6): 1059-1068.

    MANDA R, KIM M S, SHIN E J, et al. Phase stabilisation of blue-phase liquid crystals using a polymerisable chiral additive [J]. Liq. Cryst., 2017, 44(6): 1059-1068.

[60] KIMURA M, NAGUMO N, OO T N, et al. Single-substrate polymer-stabilized blue phase liquid crystal display [J]. Opt. Mater. Express, 2013, 3(12): 2086-2095.

    KIMURA M, NAGUMO N, OO T N, et al. Single-substrate polymer-stabilized blue phase liquid crystal display [J]. Opt. Mater. Express, 2013, 3(12): 2086-2095.

[61] XU X W, LIU Y J, LUO D. Flexible blue phase liquid crystal film with high stability based on polymerized liquid crystals [J]. Liq. Cryst., 2020, 47(3): 399-403.

    XU X W, LIU Y J, LUO D. Flexible blue phase liquid crystal film with high stability based on polymerized liquid crystals [J]. Liq. Cryst., 2020, 47(3): 399-403.

[62] CHEN K M, GAUZA S, XIANYU H Q, et al. Hysteresis effects in blue-phase liquid crystals [J]. J. Disp. Technol., 2010, 6(8): 318-322.

    CHEN K M, GAUZA S, XIANYU H Q, et al. Hysteresis effects in blue-phase liquid crystals [J]. J. Disp. Technol., 2010, 6(8): 318-322.

[63] HU D C, LI W H, CHEN X W, et al. Template effect on reconstruction of blue phase liquid crystal [J]. J. Soc. Inform. Disp., 2016, 24(10): 593-599.

    HU D C, LI W H, CHEN X W, et al. Template effect on reconstruction of blue phase liquid crystal [J]. J. Soc. Inform. Disp., 2016, 24(10): 593-599.

[64] RAVNIK M, FUKUDA J I. Templated blue phases [J]. Soft Matter, 2015, 11(43): 8417-8425.

    RAVNIK M, FUKUDA J I. Templated blue phases [J]. Soft Matter, 2015, 11(43): 8417-8425.

[65] CASTLES F, DAY F V, MORRIS S M, et al. Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications [J]. Nat. Mater., 2012, 11(7): 599-603.

    CASTLES F, DAY F V, MORRIS S M, et al. Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications [J]. Nat. Mater., 2012, 11(7): 599-603.

[66] CASTLES F, MORRIS S M, HUNG J M C, et al. Stretchable liquid-crystal blue-phase gels [J]. Nat. Mater., 2014, 13(8): 817-821.

    CASTLES F, MORRIS S M, HUNG J M C, et al. Stretchable liquid-crystal blue-phase gels [J]. Nat. Mater., 2014, 13(8): 817-821.

[67] CHEN Y, WU S T. Electric field-induced monodomain blue phase liquid crystals [J]. Appl. Phys. Lett., 2013, 102(17): 171110.

    CHEN Y, WU S T. Electric field-induced monodomain blue phase liquid crystals [J]. Appl. Phys. Lett., 2013, 102(17): 171110.

[68] ORZECHOWSKI K, SALA-TEFELSKA M M, SIERAKOWSKI M W, et al. Optical properties of cubic blue phase liquid crystal in photonic microstructures [J]. Opt. Express, 2019, 27(10): 14270-14282.

    ORZECHOWSKI K, SALA-TEFELSKA M M, SIERAKOWSKI M W, et al. Optical properties of cubic blue phase liquid crystal in photonic microstructures [J]. Opt. Express, 2019, 27(10): 14270-14282.

[69] XU X W, LIU Y J, WANG F, et al. Narrow linewidth and temperature insensitive blue phase liquid crystal films [J]. IEEE Photonics J., 2018, 10(6): 7001007.

    XU X W, LIU Y J, WANG F, et al. Narrow linewidth and temperature insensitive blue phase liquid crystal films [J]. IEEE Photonics J., 2018, 10(6): 7001007.

[70] ZHENG Z G, YUAN C L, HU W, et al. Light-patterned crystallographic direction of a self-organized 3D soft photonic crystal [J]. Adv. Mater., 2017, 29(42): 1703165.

    ZHENG Z G, YUAN C L, HU W, et al. Light-patterned crystallographic direction of a self-organized 3D soft photonic crystal [J]. Adv. Mater., 2017, 29(42): 1703165.

[71] CHEN C W, HOU C T, LI C C, et al. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases [J]. Nat. Commun., 2017, 8(1): 727.

    CHEN C W, HOU C T, LI C C, et al. Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases [J]. Nat. Commun., 2017, 8(1): 727.

[72] MARTNEZ-GONZLEZ J A, LI X, SADATI M, et al. Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals [J]. Nat. Commun., 2017, 8(1): 15854.

    MARTNEZ-GONZLEZ J A, LI X, SADATI M, et al. Directed self-assembly of liquid crystalline blue-phases into ideal single-crystals [J]. Nat. Commun., 2017, 8(1): 15854.

[73] LI X, MARTNEZ-GONZLEZ J A, HERNNDEZ-ORTIZ J P, et al. Mesoscale martensitic transformation in single crystals of topological defects [J]. Proc. Natl. Acad. Sci. USA, 2017, 114(38): 10011-10016.

    LI X, MARTNEZ-GONZLEZ J A, HERNNDEZ-ORTIZ J P, et al. Mesoscale martensitic transformation in single crystals of topological defects [J]. Proc. Natl. Acad. Sci. USA, 2017, 114(38): 10011-10016.

[74] LI X, MARTNEZ-GONZLEZ J A, GUZMN O, et al. Sculpted grain boundaries in soft crystals [J]. Sci. Adv., 2019, 5(11): eaax9112.

    LI X, MARTNEZ-GONZLEZ J A, GUZMN O, et al. Sculpted grain boundaries in soft crystals [J]. Sci. Adv., 2019, 5(11): eaax9112.

[75] LI X, MARTNEZ-GONZLEZ J A, PARK K, et al. Perfection in nucleation and growth of blue-phase single crystals: small free-energy required to self-assemble at specific lattice orientation [J]. ACS Appl. Mater. Interfaces, 2019, 11(9): 9487-9495.

    LI X, MARTNEZ-GONZLEZ J A, PARK K, et al. Perfection in nucleation and growth of blue-phase single crystals: small free-energy required to self-assemble at specific lattice orientation [J]. ACS Appl. Mater. Interfaces, 2019, 11(9): 9487-9495.

[76] YANG J J, ZHAO W D, YANG Z, et al. Printable photonic polymer coating based on a monodomain blue phase liquid crystal network [J]. J. Mater. Chem. C, 2019, 7(44): 13764-13769.

    YANG J J, ZHAO W D, YANG Z, et al. Printable photonic polymer coating based on a monodomain blue phase liquid crystal network [J]. J. Mater. Chem. C, 2019, 7(44): 13764-13769.

[77] GUO D Y, CHEN C W, LI C C, et al. Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction [J]. Nat. Mater., 2020, 19(1): 94-101.

    GUO D Y, CHEN C W, LI C C, et al. Reconfiguration of three-dimensional liquid-crystalline photonic crystals by electrostriction [J]. Nat. Mater., 2020, 19(1): 94-101.

[78] XU X W, LIU Z, LIU Y J, et al. Electrically switchable, hyper-reflective blue phase liquid crystals films [J]. Adv. Opt. Mater., 2018, 6(3): 1700891.

    XU X W, LIU Z, LIU Y J, et al. Electrically switchable, hyper-reflective blue phase liquid crystals films [J]. Adv. Opt. Mater., 2018, 6(3): 1700891.

[79] WANG M, ZOU C, LI C Y, et al. Bias-polarity dependent bidirectional modulation of photonic bandgap in a nanoengineered 3D blue phase polymer scaffold for tunable laser application [J]. Adv. Opt. Mater., 2018, 6(16): 1800409.

    WANG M, ZOU C, LI C Y, et al. Bias-polarity dependent bidirectional modulation of photonic bandgap in a nanoengineered 3D blue phase polymer scaffold for tunable laser application [J]. Adv. Opt. Mater., 2018, 6(16): 1800409.

[80] WANG M, ZOU C, SUN J, et al. Asymmetric tunable photonic bandgaps in self-organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity [J]. Adv. Funct. Mater., 2017, 27(46): 1702261.

    WANG M, ZOU C, SUN J, et al. Asymmetric tunable photonic bandgaps in self-organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity [J]. Adv. Funct. Mater., 2017, 27(46): 1702261.

[81] LIN T H, LI Y N, WANG C T, et al. Red, green and blue reflections enabled in an optically tunable self-organized 3D cubic nanostructured thin film [J]. Adv. Mater., 2013, 25(36): 5050-5054.

    LIN T H, LI Y N, WANG C T, et al. Red, green and blue reflections enabled in an optically tunable self-organized 3D cubic nanostructured thin film [J]. Adv. Mater., 2013, 25(36): 5050-5054.

续晓婉, 刘言军, 罗丹. 蓝相液晶晶体结构与结构色[J]. 液晶与显示, 2020, 35(7): 685. XU Xiao-wan, LIU Yan-jun, LUO Dan. Crystal structures and structural colors of blue phase liquid crystals[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(7): 685.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!