中国激光, 2015, 42 (8): 0809002, 网络出版: 2022-09-24   

相位板偏心对波前编码系统的成像影响分析

Analysis of Effect of Phase Plate Decenter on Wavefront Coding Imaging
作者单位
北京理工大学光电学院精密光电测试仪器及技术北京市重点实验室, 北京 100081
摘要
理论及实验分析了三次相位板的偏心对波前编码成像的影响。理论分析得到相位板倾斜和偏心后的波前编码系统的光瞳函数相位项的表达式。分析表明,当仅有偏心时,相位板位置变化会产生相位因子的变化效应和离焦量的改变,它们均与相位板的偏移量相关。同时仿真结果表明,偏心会改变点扩散函数(PSF)的能量分布及PSF包络的两条直角边长度,降低系统的调制传递函数(MTF)值;z 向偏心对PSF 的影响小于x 向或y 向的偏心对PSF 的影响。实验结果表明,偏心在一定的范围内对PSF 的影响较小,复原图像在焦深范围内的清晰度一致性较好;但是偏心会降低焦深延拓率。实验结果与理论分析结果具有良好的一致性。研究结果对基于相位掩模板的波前编码系统在空间光学系统、显微系统、红外成像等领域的应用具有较高的参考价值。
Abstract
The impact of cubic phase plate decenter on the imaging of wavefront coding system is analyzed, and the phase component of pupil function of wavefront coding system with the tilt and decenter parameters is calculated. It presents that decenter can also enlarge or reduce the phase factor and the amount of defocus. The simulation indicates that the decenter makes the system modulation transfer function (MTF) drop through changing the energy distribution and the sagittal or meridional length of point spread function (PSF). It also indicates that the effect of z-direction decenter is lower than that of x-direction or y-direction decenter. The experimental results show that decenter has lower influence on PSF in a certain range, and the clarity of restored images has excellent consistency in the range of depth of focus, but extension of depth of focus drops with decenter. The experimental results confirm the analysis of decenter. This study has high application value in the space optical system, microscopy system, and infrared imaging system with the wavefront coding technology.
参考文献

[1] Xiao Jinsheng, Du Kanghua, Tu Chaoping, et al.. Depth of field simulation display for multi-focus images based on phased Gaussian kernel[J]. Acta Optica Sinica, 2014, 34(10): 1011006.

[2] Wang Zhongxun, Pan Yiming, Yin Shaoyun, et al.. Laser processing lens of long focal depth and high resolution[J]. Acta Optica Sinica, 2013, 33(2): 0222004.

[3] Wang Tianyang, Xu Zhaopeng, Zhu Huafeng, et al.. Effect of incident light field distribution on super-resolution and DOF of superresolution pupil filter[J]. Laser & Optoelectronics Progress, 2014, 51(11): 112301.

[4] Yu Lu, Cheng Dewen, Zhou Wei, et al.. Optimization design of rigid endoscope with high definition and large depth of field[J]. Acta Optica Sinica, 2013, 33(11): 1122003.

[5] Dowski Jr E R, Cathey W T. Extended depth of field through wave-front coding[J]. Applied Optics, 1995, 34(11): 1859-1866.

[6] Bagheri S, Silveira P E X, de Farias D P. Analytical optimal solution of the extension of the depth of field using cubic-phase wavefront coding. Part I. Reduced-complexity approximate representation of the modulation transfer function[J]. JOSA A, 2008, 25(5): 1051-1063.

[7] Zhang W Z, Ye Z, Zhao T Y, et al.. Point spread function characteristics analysis of the wavefront coding system[J]. Optics Express, 2007, 15(4): 1543-1552.

[8] Prischepa I A, Dowski Jr E R. Wavefront coded zoom lens system[C]. SPIE, 2001, 4487: 83-93.

[9] Pan C, Chen J B, Zhang R F, et al.. Extension ratio of depth of field by wavefront coding method[J]. Optics Express, 2008, 16(17): 13364-13371.

[10] Tucker S, Cathey W T, Dowski Jr E. Extended depth of field and aberration control for inexpensive digital microscope systems[J]. Optics Express, 1999, 4(11): 467-474.

[11] Liu Qinxiao, Yu Feihong. Design and research of wavefront coding microscope system based on traditional microscope system[J]. Acta Optica Sinica, 2014, 34(3): 0322004.

[12] Wach H B, Dowski Jr E R, Cathey W T. Control of chromatic focal shift through wave-front coding[J]. Applied Optics, 1998, 37(23): 5359-5367.

[13] Dowski Jr E R, Kubala K S. Reducing size, weight, and cost in a LWIR imaging system with wavefront coding[C]. SPIE, 2004, 5407: 66-73.

[14] Le V N, Chen S Q, Fan Z G. Optimized asymmetrical tangent phase mask to obtain defocus invariant modulation transfer function in incoherent imaging systems[J]. Optics Letters, 2014, 39(7): 2171-2174.

[15] Liu M, Dong L Q, Zhao Y J, et al.. Stationary phase analysis of generalized cubic phase mask wavefront coding[J]. Optics Communications, 2013, 298: 67-74.

[16] Takahashi Y, Komatsu S. Optimized free-form phase mask for extension of depth of field in wavefront-coded imaging[J]. Optics Letters, 2008, 33(13): 1515-1517.

[17] Yan Feng. Intelligent pupil technology applied on TMA system on space-borne camera[J]. Laser & Optoelectronics Progress, 2014, 51(5): 051101.

[18] Yan Feng. Optimization technique of wavefront coded system based on modulation transfer function invariance[J]. Acta Optica Sinica, 2013, 33(4): 0411004.

[19] Zhao T Y, Chen Y P, Zhang W Y, et al.. Focal depth extending using rotational symmetric pupil masks[J]. Chinese Optics Letters, 2007, 5(2): 71-73.

[20] Zhao Tingyu, Ye Zi, Zhang Wenyu, et al.. The extension effect of point spread function in wavefront coding system due to off-axis illumination[J]. Acta Physica Sinica, 2008, 57(1): 200-205.

[21] Li Xiaotong, Cen Zhaofeng. Geometrical Optics Aberrations and Optical Design[M]. Hangzhou: Zhejiang University Press, 2007: 154-155.

郭小虎, 赵跃进, 董立泉, 刘明, 孔令琴, 吴益剑. 相位板偏心对波前编码系统的成像影响分析[J]. 中国激光, 2015, 42(8): 0809002. Guo Xiaohu, Zhao Yuejin, Dong Liquan, Liu Ming, Kong Lingqin, Wu Yijian. Analysis of Effect of Phase Plate Decenter on Wavefront Coding Imaging[J]. Chinese Journal of Lasers, 2015, 42(8): 0809002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!