强激光与粒子束, 2005, 17 (7): 961, 网络出版: 2006-04-28   

激光辐照下杂质诱导光学玻璃损伤的两种机理

Inclusion damage mechanisms of optical glass under laser irradiation
胡鹏 1,2陈发良 1,*
作者单位
1 北京应用物理与计算数学研究所,北京,100088
2 中国工程物理研究院研究生部,北京,100088
摘要
基于空间球对称热弹性理论,从热传导、热应力方程出发,计算了含强吸收杂质Pt的石英和K9玻璃在激光脉冲辐照下的温升场和应力分布,同时考虑杂质强吸收汽化相变行为,发现含强吸收杂质的光学玻璃的激光损伤,主要是由于温度梯度引起的热应力和杂质汽化蒸汽压的作用的结果.由于不同的热物理和力学性质,当杂质没有汽化时,石英玻璃中的热应力不会达到断裂强度,杂质汽化产生的压力是石英玻璃破坏的主要原因;对K9玻璃,即使杂质没有达到汽化温度,K9玻璃中的温度梯度产生的热应力也会超过其抗压强度而导致破裂,杂质汽化后的蒸汽压增大了破坏的程度.此外,分析了杂质颗粒大小对材料激光损伤阈值的影响,发现存在一个最有害的颗粒尺寸,含该颗粒尺寸杂质的材料激光损伤阈值最低.
Abstract
Based on the theory of thermal elasticity of spherical symmetry, the laser-induced temperature rise and stress in silica glass or K9 glass, which contain high laser-absorptive platinum inclusion, are calculated from heat conduction and thermal stress equations. Phase change of the inclusion is considered. The optical glass containing inclusion is found to be damaged mainly by either thermal stress or the pressure resulted from boiling of the inclusion. Because of the difference in thermal and mechanical properties between silica glass and K9 glass, the thermal stress in silica glass will not be enough to make it damage before the inclusion vaporizes, and only the pressure due to the inclusion's boiling will serve as the main damage source. While in K9 glass, before the inclusion boils, thermal stress exceeds the materials' mechanical strength, leading to mechanical damage; if the inclusion is vaporized, the resulted pressure furthers the damage. The effect of inclusion size is studied. With the increase of the inclusion's size,the glass's damage threshold in terms of laser energy density decrease firstly,then increases.So a hazardous inclusion size is found,which determinds the lowest damage threshold.
参考文献

[1] Sparks M, Duthle C T. Theory of infrared absorption and material failure in crystal containing inclusion[J]. J Appl Phys, 1973, 44:3038-3045.

[2] Hopper R W, Uhlmann D R. Mechanism of inclusion damage in laser glass[J]. J Appl Phys, 1970, 41(10):4023-4037.

[3] Bonneau F, Combis P, Rullier J, et al. Study of UV laser interaction with gold nanoparticles embedded in silica[J]. Appl Phys B, 2002, 75(2):803-815.

[4] Bonneau F, Combis P, Rullier J, et al. Numerical simulations for description of UV laser interaction with gold nanoparticles embedded in silica[J]. Appl Phys B, 2004, 78(2):447-552.

[5] Zhao Y A, Gao W D, Shao J D, et al. Roles of absorbing defects and structural defects in multiplayer under single-shot and multi-shot laser radiation[J]. Appl Surf Sci,2004, 227:275-281.

[6] Steve G J, Floed E. Beyond perfection:The need for understanding contamination effects on real-world optics[A]. Proc of SPIE[C]. 1994,2114:505-511.

[7] Bennett H E, Guenther A H, Kozlowski M R, et al. Blew-up behavior of high-power laser field in tiny nanabsorbing defects in transparent materials[A]. Proc of SPIE[C]. 1998, 3244: 634-640.

[8] Papernov S, Schmid A W. Correlations between embedded single gold nanoparticles in SiO2 thin film and nanoscale crater formation induced by pulsed-laser radiation[J]. Appl Phys B, 2002, 92(10):5720-5728.

[9] 竹内洋一郎. 热应力[M]. 北京:科学出版社,1977.
Takeuchi Y. Thermal Stress. Beijing: Science Press,1977.

[10] 经福谦. 实验物态方程导引(第二版)[M]. 北京:科学出版社,1999.
Jing F Q. Introduction to experimental equation of state. Second Edition. Beijing: Science Press,1999.

[11] 饭田修一, 大野和郎, 神前熙, 等. 物理学常用数表[M]. 北京:科学出版社, 1979.
Iida S, Sinzen H, Ono K,et al. Physics common datasheet. Beijing: Science Press,1979.

[12] 罗福,孙承纬,杜祥琬. 1.06 μm连续激光辐照下K9玻璃板的应力松弛破坏[J]. 强激光与粒子束, 2001, 13(1):19-22.
Luo F,Sun C W,Du X W. Stress relaxation damage in K9 glass plate irradiated by 1.06 μm CW laser. High Power Laser and Particle Beams, 2001, 13(1):19-22.

胡鹏, 陈发良. 激光辐照下杂质诱导光学玻璃损伤的两种机理[J]. 强激光与粒子束, 2005, 17(7): 961. HU Peng, CHEN Fa-liang. Inclusion damage mechanisms of optical glass under laser irradiation[J]. High Power Laser and Particle Beams, 2005, 17(7): 961.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!