红外与毫米波学报, 2016, 35 (6): 646, 网络出版: 2017-01-12  

(111)方向的InAs/GaSb超晶格材料电子结构的杂化泛函计算

Hybrid functional calculation of electronic structure of InAs/GaSb superlattice in (111) orientation
作者单位
1 中国科学院上海技术物理研究所 红外物理国家重点实验室,上海 200083
2 中国科学院大学,北京 100049
摘要
采用电子密度泛函理论方法计算了一系列(111)方向的InAs/GaSb超晶格的电子结构和能带结构.将杂化泛函的计算结果与普通密度泛函方法的计算结果进行了比较.Heyd-Scuseria-Ernzerhof (HSE)杂化与对固体修正的Perdew-Burke-Ernzerhof (PBE)近似结合的杂化泛函显示了较传统PBE方法和若干其他杂化泛函更符合实验数据的结果.采用该方法研究了InAs/GaSb超晶格的带隙随超晶格周期厚度以及InAs/GaSb比例变化的规律.其结果与以往实验结果符合很好.这些结果表明HSE-PBEsol方法对于估计InAs/GaSb超晶格的电子性质适用.
Abstract
Electronic structures and band structures of a series of InAs/GaSb superlattice in (111) orientation were calculated by density functional theory (DFT) method. Heyd-Scuseria-Ernzerhof (HSE) hybridization coupled with revised Perdew-Burke-Ernzerhof (PBE) approximation for solids and surfaces (PBEsol) showed better consistency with the experimental measurements than conventional DFT and several compared hybrid functionals. The bandgap changes with periodic thickness and InAs/GaSb ratio of InAs/GaSb superlattice. The results are in good agreement with the former experimental researches. These results indicate the feasibility of HSE coupled with PBEsol method in prediction of the electronic properties of InAs/GaSb superlattice.
参考文献

[1] SaHalasz G A, Tsu R, Esaki L. A new semiconductor superlattice [J]. Applied Physics Letters, 1977, 30(12): 651-653.

[2] Rogalski A. Material consideration for third generation infrared photon detectors [J]. Infrared Physics and Technology, 2007, 50(23): 240-252.

[3] Johnson H J, Samoska L A, Gossard A C, et al. Electrical and optical properties of infrared photodiodes using the InAs/Ga1xInxSb superlattice in heterojuntions with GaSb[J]. Journal of Applied Physics, 1996, 80(2):1116-1127.

[4] XU QingQing, CHEN JianXin, ZHOU Yi, et al. Midwavelength infrared InAs/GaSb type II superlattice detectors[J]. Infrared and Laser Engineering (徐庆庆, 陈建新, 周易, 等. InAs/GaSb II类超晶格中波红外探测器,红外与激光工程), 2012, 41(1): 7-9.

[5] BAI ZhiZhong, XU ZhiCheng, ZHOU Yi, et al. 320×256 dualcolor midwavelength infrared InAs/GaSb superlattice focal plane arrays[J]. Journal of Infrared and Millimeter Waves (白治中, 徐志成, 周易, 等. 320×256元InAs/GaSb II类超晶格中波红外双色焦平面探测器, 红外与毫米波学报), 2012, 34(6): 716-720.

[6] Plis E, Klein B, Myers S, et al. TypeII InAs/GaSb strained layer superlattices grown on GaSb (111)B substrate [J]. Journal of Vacuum Science & Technology B, 2013, 31(3): 03C123.

[7] Bastard G. Theoretical investigations of superlattice bandstructure in the envelopefunction approximation [J]. Physical Reviews B, 1982, 25(12): 7584-7597.

[8] Wei Y J, Razeghi M. Modeling of typeII InAs/GaSb superlattices using an empirical tightbinding method and interface engineering [J]. Physical Reviews B 2004, 69(8): 085316.

[9] Wang J W, Zhang Y. Bandgap corrected density functional theory calculations for InAs/GaSb type II superlattices [J]. Journal of Applied Physics, 2014, 116(21): 214301.

[10] Stephens P J, Devlin F J, Chabalowski C F, et al. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields [J]. The Journal of Physical Chemisty, 1994, 98(45): 11623-11627.

[11] Adamo C, Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model [J]. The Journal of Chemical Physics, 1999, 110(13): 6158-6170.

[12] Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential [J]. The Journal of Chemical Physics, 2003, 118(18):8207.

[13] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18):3865.

[14] Perdew J P, Ruzsinszky A, Csonka G I, et al. Restoring the densitygradient expansion for exchange in solids and surfaces [J]. Physical Review Letters, 2009, 100(13):136406.

[15] Kresse G, Furthmüller J. Efficiency of abinitio total energy calculations for metals and semiconductors using a planewave basis set [J]. Computational Materials Science, 1996, 6(1):15.

[16] Kresse G, Furthmüller J. Efficient iterative schemes for ab initio totalenergy calculations using a planewave basis set [J]. Physical Review B, 1996, 54(16):11169.

[17] Blchl P E. Projector augmentedwave method [J]. Physical Review B, 1994, 50:17953.

[18] Hinuma Y, Grüneis A, Kresse G, et al. Band alignment of semiconductors from densityfunctional theoryand manybody perturbation theory [J]. Physical Review B, 2014, 90:155405.

[19] ZHOU Yi, CHEN JianXin, HE Li. Band structure calculation of InAs/GaSb superlattice under 4 layers model [J]. Journal of Infrared and Millimeter Waves (周易, 陈建新,何力. 四层结构模型下的InAs/GaSb超晶格材料能带计算, 红外与毫米波学报), 2013, 32(1): 13-17.

姚路驰, 周孝好, 陈效双. (111)方向的InAs/GaSb超晶格材料电子结构的杂化泛函计算[J]. 红外与毫米波学报, 2016, 35(6): 646. YAO Lu-Chi, ZHOU Xiao-Hao, CHEN Xiao-Shuang. Hybrid functional calculation of electronic structure of InAs/GaSb superlattice in (111) orientation[J]. Journal of Infrared and Millimeter Waves, 2016, 35(6): 646.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!