Journal of Innovative Optical Health Sciences, 2013, 6 (3): 1350026, Published Online: Jan. 10, 2019  

NONINVASIVE OPTICAL IMAGING OF STAPHYLOCOCCUS AUREUS INFECTION IN VIVO USING AN ANTIMICROBIAL PEPTIDE FRAGMENT BASED NEAR-INFRARED FLUORESCENT PROBES

Author Affiliations
Department of Biomedical Engineering School of Life Science and Technology China Pharmaceutical University Nanjing 210009, P. R. China
Abstract
The diagnosis of bacterial infections remains a major challenge in medicine. Optical imaging of bacterial infection in living animals is usually conducted with genetic reporters such as lightemitting enzymes or fluorescent proteins. However, there are many circumstances where genetic reporters are not applicable, and there is an urgent need for exogenous synthetic probes that can selectively target bacteria. Optical imaging of bacteria in vivo is much less developed than methods such as radioimaging and MRI. Furthermore near-infrared (NIR) dyes with emission wavelengths in the region of 650·900 nm can propagate through two or more centimeters of tissue and may enable deeper tissue imaging if sensitive detection techniques are employed. Here we constructed an antimicrobial peptide fragment UBI29-41-based near-infrared fluorescent imaging probe. The probe is composed of UBI29-41 conjugated to a near infrared dye ICG-Der- 02. UBI29-41 is a cationic antimicrobial peptide that targets the anionic surfaces of bacterial cells. The probe allows detection of Staphylococcus aureus infection (5×107cells) in a mouse local infection model using whole animal near-infrared fluorescence imaging. Furthermore, we demonstrate that the UBI29-41-based imaging probe can selectively accumulate within bacteria. The significantly higher accumulation in bacterial infection suggests that UBI29-41-based imaging probe may be a promising imaging agent to detect bacterial infections.
References

[1] A. Lupetti, M. M. Welling, E. K. J. Pauwels et al. "Radiolabelled antimicrobial peptides for infection detection," Lancet Infect. Dis. 3(4), 223-229 (2003).

[2] F. D. Lowy, "Antimicrobial resistance: The example of Staphylococcus aureus," J. Clin. Invest. 111(9), 1265-1273 (2003).

[3] M. L. Embleton, S. P. Nair, B. D. Cookson et al., "Selective lethal photosensitization of methicillinresistant Staphylococcus aureus using an Ig G-tin (IV) chlorine6 conjugate," J. Antimicrob. Chemother. 50(6), 857-864 (2002).

[4] X. H. Ning, S. J. Lee, Z. R. Wang et al., "Maltodextrin-based imaging probes detect bacteria in vivo with high sensitivity and specificity," Nat. Mater. 10, 602-607 (2011).

[5] A. Lupetti, P. H. Nibbering, Welling et al., "Radiopharmaceuticals: New antimicrobial agents," Trends Biotechnol. 21, 70-73 (2003).

[6] S. J. Jang, Y. J. Lee, S. Lim et al., "Imaging of a localized bacterial infection with endogenous thymidine kinase using radioisotope-labeled nucleosides," Int. J. Med. Microbiol. 302(2), 101-107 (2012).

[7] W. M. Leevy, S. T. Gammon, H. Jiang et al., "Optical imaging of bacterial infection in living mice using a fluorescent near-infrared molecular probe," J. Am. Chem. Soc. 128(51), 16476-16477 (2006).

[8] M. Zasloff, "Antimicrobial peptides of multicellular organisms," Nature 415(6870), 389-395 (2002).

[9] K. Matsuzaki, "Why. How are peptide-lipid interactions utilized for self-defense Magainins and tachyplesins as archetypes," Biochim. Biophys. Acta. 1462, 1-10 (1999).

[10] E. Guaní-Guerra, T. Santos-Mendoza, S. Lugo- Reyes et al., "Antimicrobial peptides: General overview and clinical implications in human health and disease," Clin. Immunol. 135, 1-11 (2010).

[11] J. R. Buscombe "The future of infection imaging," Q. J. Nucl. Med. Mol. Imag. 50, 99-103 (2006).

[12] G. Ferro-Flores, B. E. Ocampo-Garcia, L. Melendez- Alafort, "Development of specific radiopharmaceuticals for infection imaging by targeting infectious micro-organisms," Curr. Pharm. Des. 18(8), 1098- 1106 (2012).

[13] A. Lupetti, M. M. Welling, E. K. J. Pauwels et al., "Radiolabelled antimicrobial peptides for infection detection," Lancet Infect. Dis. 3(4), 223-229 (2003).

[14] M. Gandomkar, R. Najafi, M. Shafiei et al., "Clinical evaluation of antimicrobial peptide [99m Tc/ Tricine/HYNIC] ubiquicidin 29-41 as a humanspeci fic infection imaging agent," Nucl. Med. Biol. 36(2), 199-205 (2009).

[15] L. Sarda-Mantel, A. Saleh-Mghir, M. M. Welling et al., "Evaluation of 99mTc-UBI 29-41 scintigraphy for specific detection of experimental Staphylococcus aureus prosthetic joint infections," Eur. J. Nucl. Med. Mol. Imaging 34(8), 1302-1309 (2007).

[16] P. H. Nibbering, M. M. Welling, A. Paulusma- Annema et al., "99mTc-Labeled UBI 29-41 peptide for monitoring the efficacy of antibacterial agents in mice infected with Staphylococcus aureus," J. Nucl. Med. 45(2), 321-326 (2004).

[17] L. Mel-endez-Alafort, A. Nadali, G. Pasut et al., "Detection of sites of infection in mice using 99m Tc-labeled PN2S-PEG conjugated to UBI and 99m Tc-UBI: A comparative biodistribution study," Nucl. Med. Biol. 36(1), 57-64 (2009).

[18] W. M. Leevy, S. T. Gammon, J. R. Johnson et al., "Noninvasive optical imaging of Staphylococcus aureus bacterial infection in living mice using a bisdipicolylamine- zinc(II) affinity group conjugated to a near-infrared fluorophore," Bioconjug. Chem. 19, 686-692 (2008).

[19] T. Hamaoka, K. K. Mccully, "Muscle research work with britton chance from in vivo magnetic resonance spectroscopy to near-infrared spectroscopy," J. Innov. Opt. Health Sci. 04(03), 227-237 (2011).

[20] B. Zhu, E. V. A. M. Sevick-Muraca, "Minimizing excitation light leakage and maximizing measurement sensitivity for molecular imaging with near-infrared fluorescence," J. Innov. Opt. Health Sci. 4(03), 301-307 (2011).

[21] A. C. Merzagora, M. T. Schultheis, B. Onaral et al. "Functional near-infrared spectroscopy-based assessment of attention impairments after traumatic brain injury," J. Innov. Opt. Health Sci. 4(03), 251-260 (2011).

[22] W. M. Leevy, N. Serazin, B. D. Smith, "Optical imaging of bacterial infection models," Drug Discov. Today Dis. Models 4(3), 91-97 (2007).

[23] J. Cao, S. N. Wan, J. M. Tian et al., "Fast clearing RGD-based near-infrared fluorescent probes for in vivo tumor diagnosis," Contrast Media Mol. Imaging 7(4), 390-402 (2012).

[24] A. F. Radovic-Moreno, T. K. Lu, V. A. Puscasu et al., "Surface charge-switching polymeric nanoparticles for bacterial cell wall-targeted delivery of antibiotics," ACS Nano 6(5), 4279-4287 (2012).

[25] H. Y. Chen, S. S. Cui, Z. Tu et al., "In vivo monitoring of organ-selective distribution of CdHgTe/ SiO2 nanoparticles in mouse model," J. Fluoresc. 22(2), 699-706 (2012).

[26] L. L. Shan, S. S. Cui, C. L. Du et al., "A paclitaxelconjugated adenovirus vector for targeted drug delivery for tumor therapy," Biomaterials 33(1), 146-162 (2012).

[27] M. S. Akhtar, J. Iqbal, M. A. Khan et al., "99mTclabeled antimicrobial peptide ubiquicidin (29-41) accumulates less in Escherichia coli infection than in Staphlococcus aureus infection," J. Nucl. Med. 45(5), 849-856 (2004).

[28] P. H. Nibbering, M. M. Welling, P. J. Van den Broek et al., "Radiolabelled antimicrobial peptides for imaging of infections: A review," Nucl. Med. Commun. 19(12), 1117-1122 (1998).

[29] M. R. Yeaman, N. Y. Yount, "Mechanisms of antimicrobial peptide action and resistance," Pharmacol. Rev. 55(1), 27-55 (2003).

CUICUI LIU, YUEQING GU. NONINVASIVE OPTICAL IMAGING OF STAPHYLOCOCCUS AUREUS INFECTION IN VIVO USING AN ANTIMICROBIAL PEPTIDE FRAGMENT BASED NEAR-INFRARED FLUORESCENT PROBES[J]. Journal of Innovative Optical Health Sciences, 2013, 6(3): 1350026.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!