红外与激光工程, 2017, 46 (8): 0806009, 网络出版: 2017-11-07   

边界约束条件对薄板激光喷丸诱导残余应力和塑性变形的影响

Effect of boundary constraint conditions of thin plate on residual stresses and plastic deformation induced by laser shock peening
作者单位
1 安徽工业大学 机械工程学院, 安徽 马鞍山 243032
2 安徽工业大学 管理科学与工程学院, 安徽 马鞍山 243032
摘要
为研究不同边界约束条件对薄板多点激光喷丸诱导残余应力和塑性变形的影响, 采用数值模拟和试验结合的方法对7075铝合金薄板激光喷丸处理进行研究, 对比分析了板料在底部全约束和两端夹持两种边界约束条件下的变形形貌和残余应力分布。结果表明: 激光喷丸后, 板料冲击区域均产生微凹坑; 底部全约束的板料经激光喷丸后, 未发生整体变形, 仍然保持平整状态, 而两端夹持的薄板喷丸区域发生了整体向上的凸起变形。两种边界约束条件下, 最大残余压应力均出现在板料的冲击表面; 底部全约束时的最大残余压应力为299.0 MPa, 大于板料两端夹持时的251.6 MPa。在厚度方向上, 其残余应力分布也存在着明显差异, 底部全约束时, 厚度方向上的残余应力分布形式为“压应力-拉应力”, 而两端夹持时的分布形式为“压应力-拉应力-压应力”。
Abstract
The numerical simulations and experiments were employed to investigate the effect of boundary constraint conditions of thin plate on residual stresses and plastic deformation induced by laser shock peening. Two boundary conditions, bottom fully constrained and both ends clamped, were used to compare residual stresses distribution and deformation morphology of 7075 aluminum plates after impacted by multiple laser shock peening. The results show that micro-dents were generated in impacted regions of both cases after treated by laser shock peening. The plate still kept flat without cross-sectional deformation when its bottom surface was fully constrained, while the overall upward convex deformation was produced in the impacted region of plate with both ends clamped. Moreover, the maximum compressive residual stresses existed on the surface of both cases, which was 299.0 MPa in the plate with bottom fully constrained and 251.6 MPa in the other case. Different styles of residual stresses field are also found in the thickness direction. The residual stresses from the impacted surface to the bottom was "compressive residual stresses -tensile residual stresses" in the plate with bottom fully constrained, while it was "compressive residual stresses-tensile residual stresses-compressive residual stresses" in the plate with both ends clamped.
参考文献

[1] 孔德军, 周朝政, 吴永忠. 304不锈钢激光冲击处理后的残余应力产生机理[J]. 红外与激光工程, 2010, 39(4): 736-740.

    Kong Dejun, Zhou Chaozheng, Wu Yongzhong. Mechanism on residual stress of 304 stainless steel by laser shock processing[J]. Infrared and Laser Engineering, 2010, 39(4): 736-740. (in Chinese)

[2] Zhang X Q, Li H, Yu X L, et al. Investigation on effect of laser shock processing on fatigue crack initiation and its growth in aluminum alloy plate[J]. Materials and Design, 2015, 65: 425-431.

[3] 胡永祥, 姚振强, 胡俊. 激光冲击强化残余应力场的数值仿真分析[J]. 中国激光, 2006, 33(6): 846-851.

    Hu Yongxiang, Yao Zhenqiang, Hu Jun. Numerical simulation of residual stress field for laser shock processing[J]. Chinese J Lasers, 2006, 33(6): 846-851. (in Chinese)

[4] Kim J H, Kim Y J, Kim J S. Effects of simulation parameters on residual stresses for laser shock peening finite element analysis[J]. Journal of Mechanical Science and Technology, 2013, 27(7): 2025-2034.

[5] Warren A W, Guo B Y, Chen S C. Massive parallel laser shock peening: Simulation, analysis, and validation[J]. International Journal of Fatigue, 2008, 30(1): 188-197.

[6] Luo K Y, Lin T, Dai F Z, et al. Effects of overlapping rate on the uniformities of surface profile of LY2 Al alloy during massive laser shock peening impacts[J]. Surface & Coatings Technology, 2015, 266: 49-56.

[7] Zhang X Q, Chen L S, Li S Z, et al. Investigation of the fatigue life of pre-and post-drilling hole in dog-bone specimen subjected to laser shot peening[J]. Material and Design, 2015, 88: 106-114.

[8] 李靖, 李军, 何卫锋, 等. TC17钦合金激光多次冲击强化后组织和力学性能研究[J]. 红外与激光工程, 2014, 43(9): 2889-2895.

    Li Jing, Li Jun, He Weifeng, et al. Microstructure and mechanical properties of TC17 titanium alloy by laser shock peening with different impacts[J]. Infrared and Laser Engineering, 2014, 43(9): 2889-2895. (in Chinese)

[9] 张兴权, 左立生, 余晓流, 等. 强激光诱导的应力波在靶板中衰减特性数值模拟[J]. 红外与激光工程, 2014, 43(3): 681-686.

    Zhang Xingquan, Zuo Lisheng, Yu Xiaoliu, et al. Numerical simulation on attenuation of stress wave in copper target irradiated by intense laser[J]. Infrared and Laser Engineering, 2014, 43(9): 681-686. (in Chinese)

[10] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//7th International Symposium on Ballistics, 1983, 21: 541-547.

[11] Peyre P, Sollier A, Chaieb I, et al. FEM simulation of residual stresses induced by laser peening[J]. The European Physical Journal Applied Physics, 2003, 23(2): 83-88.

[12] Fabbro R, Fournier J, Ballard P, et al. Physical study of laser-produced plasma in confined geometry[J]. J Appl Phys, 1990, 68(2): 775-784.

[13] Hong X, Wang S B, Guo D H, et al. Confining medium and absorptive overlay: Their effects on a laser-induced shock wave[J]. Optics and Lasers in Engineering, 1998, 29(6): 447-455.

[14] 曹子文, 邹世坤, 车志刚. 激光诱导冲击波加载下 铝合金弯曲变形规律与表面特性研究[J]. 激光与光电子学进展, 2015, 52(12): 121405.

    Cao Ziwen, Zou Shikun, Che Zhigang. Bending deformation and surface characteristics of 2024 aluminum alloy processed by laser-induced shock wave[J]. Laser & Optoelectronics Progress, 2015, 52(12): 121405. (in Chinese)

[15] 戴梅, 金光勇, 王超, 等. 100MW级高峰值功率高光束质量Nd:YAG激光器[J]. 红外与激光工程, 2012, 41(3): 612-616.

    Dai Mei, Jin Guangyong, Wang Chao, et al. 100MW high peak power and high beam quality Nd:YAG laser[J]. Infrared and Laser Engineering, 2012, 41(3): 612-616. (in Chinese)

[16] Neila Hfaiedh, Patrice Peyre, Song H B, et al. Finite element analysis of laser shock peening of 2050-T8 aluminum alloy[J]. International Journal of Fatigue, 2015, 70: 480-489.

[17] 王珉. 抗疲劳制造原理与技术 [M]. 南京: 江苏科学技术出版社, 1999: 458-476.

    Wang Min. Principle & Technology of Anti-fatigue Manufacture [M]. Nanjing: Jiangsu Science and Technology Press, 1999: 458-476. (in Chinese)

黄志伟, 张兴权, 章艳, 裴善报, 黄志来, 陈彬. 边界约束条件对薄板激光喷丸诱导残余应力和塑性变形的影响[J]. 红外与激光工程, 2017, 46(8): 0806009. Huang Zhiwei, Zhang Xingquan, Zhang Yan, Pei Shanbao, Huang Zhilai, Chen Bin. Effect of boundary constraint conditions of thin plate on residual stresses and plastic deformation induced by laser shock peening[J]. Infrared and Laser Engineering, 2017, 46(8): 0806009.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!