大气与环境光学学报, 2019, 14 (6): 411, 网络出版: 2019-12-05   

基于聚类分析的气溶胶光学厚度时间变化特征研究

Temporal Characteristics of Aerosol Optical Depth Based on Cluster Analysis Method
作者单位
1 西北大学城市与环境学院,陕西 西安 710127
2 陕西省地表系统与环境承载力重点实验室,陕西 西安 710127
摘要
利用2008年3月~2018年2月中分辨率成像光谱仪(Moderate resolution imaging spectroradiometer, MODIS) MOD08M3遥感 反演气溶胶光学厚度(Aerosol optical depth, AOD)产品数据,结合K-means聚类分析方法,对中国中部和东部的气溶胶光学厚度 时间序列进行分析。结果表明: 1)从像元尺度分析气溶胶光学厚度的时间序列变化特征,避免了规律混杂问题,得到了准确的变化 规律和波动尺度。2)在年际间变化尺度上得到4个分区结果, AOD长期变化情况受人口分布的因素影响较大。3)在季节间变化尺度 上得到9种变化类型区,分别是:华北平原区、长江中下游区、高原山脉区、云贵区、兰州-银川-阿拉善盟区、四川盆地区、关中 陕南区、两广-湖南南部-江西南部区、东南沿海区,同时由一些变化分区的地理位置得到了该区AOD季节性波动的主导影响因素。 这些结果有助于研究AOD时间序列的准确变化和东部地区的气候环境。
Abstract
Using the K-means cluster analysis method, the times series of aerosol optical depth (AOD) over central and eastern China from March 2008 to February 2018 were analyzed based on the data of moderate resolution imaging spectroradiometer (MODIS) MOD08M3. The results show that: 1) The characteristics of time series of AOD were analyzed from the pixel scale, which avoided the problem of rules mixing and leaded to the acquisition of accurate variation rules and fluctuation scales. 2) Four regional results were obtained on the inter-annual change scale, and the inter-annual variation of AOD was mainly influenced by the factor of population distribution. 3) There are 9 types of change zones on the inter-seasonal fluctuation scale, namely, North China plain region, Middle-Lower Yangtze River region, Plateau Mountain region, Yunnan-Guizhou region, Lanzhou-Yinchuan-Alxa region, Sichuan Basin region, Guanzhong-Shaannan region, Guangdong-Guangxi-Southern Hunan-Southern Jiangxi region, and the Southeast Coastal region. And the dominant influencing factors of seasonal fluctuations of AOD in the areas have been obtained based on the geographical location of some changes in the sub-regions. These results are helpful to study the precise changes of the AOD time series and the climatic environment in the central and eastern regions.
参考文献

[1] 章澄昌,周文贤.大气气溶胶教程[M].北京:气象出版社, 1995.

    Zhang C C, Zhou W X. Atmospheric Aerosol Tutorial[M]. Beijing: China Meteorological Press, 1995(in Chinese).

[2] 张 华,黄建平.对IPCC第五次评估报告关于人为和自然辐射强迫的解读[J].气候变化研究进展, 2014, 10(1): 40-44.

    Zhang H, Huang J P.Interpretation of the IPCC Fifth assessment report on anthropogenic and natural radiative forcing[J]. Progressus Inquisitiones De Mutatione Climatis, 2014, 10(1): 40-44(in Chinese).

[3] Ramachandran S.Aerosol optical depth and fine mode fraction variations deduced from moderate resolution imaging spectroradiometer (MODIS) over four urban areas in India[J]. Journal of Geophysical Research, 2007, 112(D16): D16207.

[4] 赵仕伟,高晓清.利用MODIS C6数据分析中国西北地区气溶胶光学厚度时空变化特征[J].环境科学, 2017, 38(07): 2637-2646.

    Zhao S W, Gao X Q. Analysis ofspatio-temporal distribution and variation characteristics of aerosol Optical Depth over the Northwest of China by MODIS C6 Product[J]. Environmental Science, 2017, 38(7):2637-2646(in Chinese).

[5] 邓学良,邓伟涛,何冬燕.近年来华东地区大气气溶胶的时空特征[J].大气科学学报, 2010, 33(03): 347-354.

    Deng X L, Deng W T, He D Y. Spatial-temporal features of atmospheric aerosol in east china in recent years[J].Transactions of Atmospheric Sciences, 2010, 33(03): 347-354(in Chinese).

[6] 白淑英,史建桥,卜 军,等.近年来长江流域气溶胶光学厚度时空变化特征分析[J].生态环境学报, 2012, 21(09): 1567-1573.

    Bai S Y, Shi J Q, Pu J,et al. Spatio-temporal variations of aerosol optical depth in the Yangtze River Basin during 2000-2011[J], Ecology and Environmental Sciences, 2012, 21(09): 1567-1573(in Chinese).

[7] 刘 状,孙曦亮,刘丹等.2001-2017年中国北方省份气溶胶光学厚度的时空特征[J].环境科学学报, 2018, 38(08): 3177-3184.

    Liu Z, Sun X L, Liu D,et al. Spatio-temporal characteristics of aerosol optical depth over Beijing-Tianjin Hebei-Shandong-Henan-Shanxi-Shaanxi region during 2001-2017[J]. Acta Scientiae Circumstantiae, 2018,38(08): 3177-3184(in Chinese).

[8] 李晓静,高 玲,张兴赢,等.卫星遥感监测全球大气气溶胶光学厚度变化[J].科技导报, 2015, 33(17): 30-40.

    Li X J, Gao L, Zhang X Y, et al. Global change of aerosol optical depth based on satellite remote sensing data[J]. Science & Technology Review, 2015, 33(17): 30-40(in Chinese).

[9] 张西雅,扈海波.京津冀地区气溶胶时空分布及与城市化关系的研究[J].大气科学, 2017, 41(04): 797-810.

    Zhang X Y, Hu H B.Spatio-temporal characteristics of aerosol optical depth and their relationship with urbanization over Beijing-Tianjin-Hebei region[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(4): 797-810(in Chinese).

[10] 薛文博,武卫玲,王金南,等.中国气溶胶光学厚度时空演变特征分析[J].环境与可持续发展, 2013, 38(04): 17-20.

    Xue W B, Wu W L, Wang J N,et al. Analysis on space-time characteristics of aerosol optical depthin china[J]. Environment and Sustainable Development, 2013, 38(04): 17-20(in Chinese).

[11] Levy R C, Mattoo S, Munchak L A, et al. The collection 6 MODIS aerosol products over land and ocean[J]. Atmospheric Measurement Techniques, 2013, 6(11): 2989-3034.

[12] Hsu N C,Jeong M J, Bettenhausen C, et al. Enhanced deep blue aerosol retrieval algorithm:the second generation[J]. Journal of Geophysical Research: Atmospheres, 2013, 118(16): 9296-9315.

[13] Remer L A,Mattoo S, Levy R C, et al. MODIS 3 km aerosol product: algorithm and global perspective[J]. Atmospheric Measurement Techniques, 2013, 6(1): 69-112.

[14] Wu D,Hou Y T, Zhang Y Q. Transporting real-time video over the intemet challenges and approaches[J]. Proceeding of the IEEE, 2000, 88(12): 1855-1875.

[15] 周世兵,徐振源,唐旭清.新的K-均值算法最佳聚类数确定方法[J].计算机工程与应用, 2010, 46(16): 27-31.

    Zhou S B, Xu Z Y, Tang X Q. New method for determining optimal number of clusters in K-means clustering algorithm[J]. Computer Engineering and Applications, 2010, 46(16): 27-31(in Chinese).

[16] 张文君,顾行发,陈良富,等.基于均值-标准差的K均值初始聚类中心选取算法[J].遥感学报, 2006, (05): 715-721.

    Zhang W J, Gu X F, Chen L F, et al. An algorithm for initilizing of K-means clustering based on mean-standard deviation[J]. Journal of Remote Sensing, 2006, (05): 715-721(in Chinese).

刘状, 石晨烈, 张萌, 高志远, 祝新明, 王旭红. 基于聚类分析的气溶胶光学厚度时间变化特征研究[J]. 大气与环境光学学报, 2019, 14(6): 411. LIU Zhuang, SHI Chenlie, ZHANG Meng, GAO Zhiyuan, ZHUXinming, WANG Xuhong. Temporal Characteristics of Aerosol Optical Depth Based on Cluster Analysis Method[J]. Journal of Atmospheric and Environmental Optics, 2019, 14(6): 411.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!