光子学报, 2015, 44 (12): 1206002, 网络出版: 2020-09-03   

磁流体包覆的无芯-单模-无芯光纤结构的磁场传感特性

Magnetic Field Sensing Based on Magnetic-fluid-clad No-core Single-mode No-core Fiber Structure
作者单位
上海理工大学 理学院, 上海 200093
摘要
基于磁流体包覆的无芯-单模-无芯光纤的磁场传感结构中,无芯光纤起激发单模光纤的包层模并实现芯模-包层模干涉的作用.实验测量了该传感结构在不同外界磁场强度和温度下的透射光谱, 研究了其磁场传感性能及环境温度对传感性能的影响.结果表明, 随外界磁场强度的增加, 波长在1 462 nm和1 477 nm位置附近的干涉谷均发生红移, 其相应的磁场传感灵敏度分别为67.28 pm/Oe和49.82 pm/Oe;波长在1 462 nm位置附近的干涉谷随温度的增加发生蓝移, 干涉谷随温度变化的灵敏度为37.8 pm/℃, 该传感结构制作简单、灵敏度高, 有很好的应用前景.
Abstract
A kind of magnetic field sensing structure based on magnetic-fluid-clad no-core single-mode no-core fiber was proposed and designed. The no-core fiber in this structure can excite cladding mode and combine the core and cladding modes of the intermediate sensing single-mode fiber. The transmission spectra of the as-fabricated sensing structures at different external magnetic field strengths and ambient temperatures were investigated experimentally. The corresponding magnetic field sensing properties and influence of ambient temperature were obtained. Experimental results indicate that the valley wavelengths at around 1 462 nm and 1 477 nm shift to long wavelength side with the increase of external magnetic field. The achieved sensitives are 67.28 pm/Oe and 49.82 pm/Oe, respectively. The valley wavelength at around 1 462 nm shifts to short wavelength side with the temperature increase and the corresponding sensitivity is 37.8 pm/℃. The proposed sensing structure possesses the advantages of easiness of fabrication and high sensitivity, which is promising for future pragmatic applications.
参考文献

[1] 卜胜利. 布朗运动对纳米磁流体电学特性的影响 [J]. 上海理工大学学报, 2009, 31(6): 517-520.

    PU Sheng-li. Influence of Brownian motion on the electrical properties of a nanostructured magnetic fluid [J]. Journal of University of Shanghai for Science and Technology, 2009, 31(6): 517-520.

[2] HONG C Y, HORNG H E, YANG S Y. Tunable refractive index of magnetic fluids and its applications [J]. Physica Status Solidi C, 2004, 1(7): 1604-1609.

[3] 卜胜利, 陈险峰. 纳米磁性液体的分散稳定性分析 [J]. 上海理工大学学报, 2008, 30(4): 335-338+344.

    PU Sheng-li, CHEN Xian-feng. Dispersion stability requirements of the nanostructured magnetic liquid [J]. Journal of University of Shanghai for Science and Technology, 2008, 30(4): 335-338+344.

[4] LUO Long-feng, PU Sheng-li, TANG Jia-li, et al. Highly sensitive magnetic field sensor based on microfiber coupler with magnetic fluid [J]. Applied Physics Letters, 2015, 106(19): 193507.

[5] WANG Hao-tian, PU Sheng-li, WANG Ning, et al. Magnetic field sensing based on singlemode–multimode–singlemode fiber structures using magnetic fluids as cladding [J]. Optics Letters, 2013, 38(19): 3765-3768.

[6] MIAO Yin-ping, WU Ji-xuan, LIN Wei, et al. Magnetic field tunability of optical microfiber taper integrated with ferrofluid [J]. Optics Express, 2013, 21(24): 29914-29920.

[7] ZU Peng, CHAN C C, KOH G W, et al. Enhancement of the sensitivity of magneto optical fiber sensor by magnifying the birefringence of magnetic fluid film with Loyt-Sagnac interferometer [J]. Sensors and Actuators B: Chemical, 2014, 191: 19-23.

[8] WU Ji-xuan, MIAO Ying-ping, LIN Wei, et al. Dual-direction magnetic field sensor based on core-offset microfiber and ferrofluid [J]. IEEE Photonics Technology Letters, 2014, 26(15): 1581-1584.

[9] ZHANG Rong-xiang, LIU Tie-gen, HAN Qun, et al. U-bent single-mode multimode-single-mode fiber optic magnetic field sensor based on magnetic fluid [J]. Applied Physics Express, 2014, 7(7): 072501.

[10] DENG Ming, LIU Dan-hui, LI De-cai. Magnetic field sensor based on asymmetric optical fiber taper and magnetic fluid [J]. Sensors and Actuators A: Physical, 2014, 211: 55-59.

[11] YANG De-xing, DU Lei, XU Zeng-qi, et al. Magnetic field sensing based on tilted fiber Bragg grating coated with nanoparticle magnetic fluid [J]. Applied Physics Letters, 2014, 104(6): 061903.

[12] XIA Si-hua, WANG Jun, LU Zhang-xian, et al. Birefringence and magneto-optical properties in oleic acid coated Fe3O4 nanoparticles: application for optical switch [J]. International Journal of Nanoscience, 2011, 10(3): 515-520.

[13] LI Jian, LIU Xiao-dong, LIN Yue-qiang, et al. Field modulation of light transmission through ferrofluid film [J]. Applied Physics Letters, 2007, 91(25): 253108.

[14] TANG Jia-li, PU Sheng-li, LUO Long-feng, et al. Magnetic field sensing based on magnetic-fluid-clad multimode-singlemode-multimode fiber structures [J]. Sensors, 2014, 14: 19086-19094.

[15] PU Sheng-li, DONG Shao-hua. Magnetic field sensing based on magnetic-fluid-clad fiber-optic structure with up-tapered joints [J]. IEEE Photonics Journal, 2014, 6(4): 5300206.

[16] DONG Shao-hua, PU Sheng-li, WANG Hao-tian. Magnetic field sensing based on magnetic-fluid-clad fiber-optic structure with taper-like and lateral-offset fusion splicing [J]. Optics Express, 2014, 22(16): 19108-19116.

[17] CHEN Yao-fei, HAN Qun, LIU Tie-gen. All-fiber optical modulator based on no-core fiber and magnetic fluid as cladding [J]. Chinese Physics B, 2015, 24(1): 014214.

[18] CHEN Yao-fei, HAN Qun, LIU Tie-gen, et al. Optical fiber magnetic field sensor based on single-mode–multimode–single-mode structure and magnetic fluid [J]. Optics Letters, 2013, 38(20): 3999-4002.

[19] LI Chao, NING Ti-gang, WEN Xiao-dong, et al. Magnetic field and temperature sensor based on a no-core fiber combined with a fiber Bragg grating [J]. Optics & Laser Technology, 2015, 72: 104-107.

[20] HUANG Lung-shiang, LIN Gguei-ru, FU Ming-yue, et al. A refractive-index fiber sensor by using no-core fibers [C]. International Symposium on Next-Generation Electronics (ISNE): Taiwan, 2013.

[21] 李阳, 刘艳, 刘志波, 等. 基于单模-无芯-单模结构的光纤折射率传感器 [J]. 光电子·激光, 2013, 24(7): 1279-1285.

    LI Yang, LIU Yan, LIU Zhi-bo, et al. A refractive index sensor based on single-mode no-core single-mode fiber structure [J]. Journal of Optoelectronics · Laser, 2013, 24(7): 1279-1285.

[22] 陈耀飞, 韩群, 何洋, 等. 基于无芯光纤的单模-多模-单模折射率传感器的研究 [J]. 中国激光, 2013, 40(9): 0905001.

    CHEN Yao-fei, HAN Qun, HE Yang, et al. Study of single mode-multimode-single mode refractive index sensor based on no core fiber [J]. Chinese Journal of Laser, 2013, 40(9): 0905001.

[23] LIN Lin, HAN Qun, CHEN Yao-fei, et al. An all-fiber optic current sensor based on ferrofluids and multimode interference [J]. IEEE Sensors Journal, 2014, 14(6): 1749-1754.

[24] 张荣香, 韩群, 刘铁根, 等. 宽带光源入射下单模多模单模全光纤电流传感器特性研究 [J]. 中国激光, 2014, 41(7): 0705003.

    ZHANG Rong-xiang, HAN Qun, LIU Tie-gen, et al. Investigation of characteristics of single mode –multimode-single mode all-fiber optic current sensor with broadband light source inputting [J]. Chinese Journal of Laser, 2014, 41(7): 0705003.

[25] LEE Cheng-ling, LIN Kuo-hsiang, LIN Yuan-yao, et al. Widely tunable and ultrasensitive leaky-guided multimode fiber interferometer based on refractive-index-matched coupling [J]. Optics Letters, 2012, 37(3): 302-305.

[26] XIA Li, LI Le-cheng, LI Wei, et al. Novel optical fiber humidity sensor based on a no-core fiber structure [J]. Sensors and Actuators A: Physical, 2013, 190: 1-5.

[27] HUANG Jie, LAN Xin-wei, KAUR A, et al. Temperature compensated refractometer based on a cascaded SMS/LPFG fiber structure [J]. Sensors and Actuators B: Chemical, 2014, 198: 384-387.

[28] GARG R, TRIPATHI S M, THYAGARAJAN K, et al. Long period fiber grating based temperature-compensated high performance sensor for bio-chemical sensing applications [J]. Sensors and Actuators B: Chemical, 2013, 176: 1121-1127.

卜胜利, 汤佳莉, 刘志恒, 罗龙锋. 磁流体包覆的无芯-单模-无芯光纤结构的磁场传感特性[J]. 光子学报, 2015, 44(12): 1206002. Pu Shengli, Tang Jiali, Liu Zhiheng, Luo Longfeng. Magnetic Field Sensing Based on Magnetic-fluid-clad No-core Single-mode No-core Fiber Structure[J]. ACTA PHOTONICA SINICA, 2015, 44(12): 1206002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!