红外与激光工程, 2017, 46 (7): 0730002, 网络出版: 2017-09-21   

压缩真空注入超灵敏干涉型量子激光雷达

Super-sensitivity interferometric quantum lidar with squeezed-vacuum injection
作者单位
1 哈尔滨工业大学 物理系, 黑龙江 哈尔滨 150001
2 天津津航技术物理研究所, 天津 300308
摘要
干涉型激光雷达是通过相位干涉检测实现高精度目标距离探测的设备, 传统干涉型激光雷达相位探测灵敏度受到标准量子极限的限制, 从而限制了测距精度。为了进一步打破极限, 提高精度, 提出了基于压缩真空态注入的相位超灵敏度干涉型量子激光雷达方案, 可以使相位灵敏度突破标准量子极限, 并分别推导了Z探测法、强度差探测法和奇偶探测法情况下的相位灵敏度, 随后, 进行仿真计算, 并对性能的提升进行比较与分析。最后, 在灵敏度最好的奇偶探测法的基础上, 建立了存在传输损耗时的相位灵敏度模型, 讨论了实现超灵敏度允许的最大传输损耗。
Abstract
Interferometric lidar is a device to achieve high precision distance detection by phase estimation. The phase sensitivity of the traditional interferometric lidar is limited by the standard quantum limit, this affecting the precision of ranging. In order to further break the limit and improve the system precision, a scheme of super-sensitivity interferometric quantum lidar with squeezed-vacuum injection was put forward, thus phase sensitivity breaking through the standard quantum limit. And the phase sensitivity of the system was derived with Z detection, intensity difference detection and parity detection method. Then, the ascension of performance was compared and analyzed by simulation calculation. Finally, on the basis of best detection method-parity detection, a phase sensitivity model with transmission loss was establised, and the maximum transmission loss allowed by super-sensitivity was discussed.
参考文献

[1] Lanzagorta M. Quantum radar[J]. Synthesis Lectures on Quantum Computing, 2011, 3(1): 1-139.

[2] Shapiro J H, Lloyd S. Quantum illumination versus coherent-state target detection[J]. New Journal of Physics, 2009, 11(6): 063045.

[3]

    Lee H, Kok P, Dowling J P. A quantum Rosetta stone for interferometry[J]. Journal of Modern Optics, 2002, 49(14-15): 2325-2338.

[4] Jiang K, Lee H, Gerry C C, et al. Super-resolving quantum radar: Coherent-state sources with homodyne detection suffice to beat the diffraction limit[J]. Journal of Applied Physics, 2013, 114(19): 193102.

[5] Gerry C C, Mimih J. The parity operator in quantum optical metrology[J]. Contemporary Physics, 2010, 51(6): 497-511.

[6] Dutton Z, Shapiro J H, Guha S. LADAR resolution improvement using receivers enhanced with squeezed-vacuum injection and phase-sensitive amplification[J]. Journal of the Optical Society of America B, 2010, 27(6): A63-A72.

[7] Dowling J P. Quantum optical metrology-the lowdown on high-N00N states[J]. Contemporary Physics, 2008, 49(2): 125-143.

[8] Escher B M, de Matos Filho R L, Davidovich L. Quantum metrology for noisy systems[J]. Brazilian Journal of Physics, 2011, 41(4-6): 229-247.

[9] Bachor H A, Ralph T C. A Guide to Experiments in Quantum Optics[M]. New Jersey: Wiley, 2004.

[10] Pezzé L, Smerzi A. Mach-Zehnder interferometry at the Heisenberg limit with coherent and squeezed-vacuum light[J]. Physical Review Letters, 2008, 100(7): 073601.

[11] Gerry C C. Heisenberg-limit interferometry with four-wave mixers operating in a nonlinear regime[J]. Physical Review A, 2000, 61(4): 043811.

[12] Wang Qing, Zhang Yong, Hao Lili, et al. Super-resolving quantum LADAR with odd coherence superposition states sources at shot noise limit[J]. Infrared and Laser Engineering, 2015, 44(9): 2569-2574. (in Chinese)

[13] Knysh S, Smelyanskiy V N, Durkin G A. Scaling laws for precision in quantum interferometry and the bifurcation landscape of the optimal state[J]. Physical Review A, 2011, 83(2): 021804.

[14] Feng X M, Jin G R, Yang W. Quantum interferometry with binary-outcome measurements in the presence of phase diffusion[J]. Physical Review A, 2014, 90(90): 4616-4627.

[15] Loudon R. The Quantum Theory of Light[M]. New York: OUP Oxford, 2000.

[16] Xu Zhengping, Shen Honghai, Xu Yongsen. Review of the development laser active imaging system with direct ranging[J]. Chinese Optics, 2014, 8(1): 28-38. (in Chinese)

[17] Wang Weibing, Wang Tingfeng, Guo Jin. Orbit determination for space target based on opto-electrical imaging, tracking and ranging on satellite[J]. Optics and Precision Engineering, 2015, 23(2): 528-539. (in Chinese)

张建东, 张子静, 赵远, 王峰, 苏建忠. 压缩真空注入超灵敏干涉型量子激光雷达[J]. 红外与激光工程, 2017, 46(7): 0730002. Zhang Jiandong, Zhang Zijing, Zhao Yuan, Wang Feng, Su Jianzhong. Super-sensitivity interferometric quantum lidar with squeezed-vacuum injection[J]. Infrared and Laser Engineering, 2017, 46(7): 0730002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!