激光与光电子学进展, 2020, 57 (20): 203002, 网络出版: 2020-09-27   

基于高光谱技术和IRIV-FOA-ELM算法的花椒挥发油无损检测 下载: 956次

Nondestructive Testing of Volatile Oil of Zanthoxylum Bungeanum Based on Hyperspectral Technique and IRIV-FOA-ELM Algorithm
作者单位
1 四川农业大学机电学院, 四川 雅安 625014
2 四川农业大学信息工程学院, 四川 雅安 625014
引用该论文

纪然仕, 陈晓燕, 刘素珍, 饶利波, 汪震. 基于高光谱技术和IRIV-FOA-ELM算法的花椒挥发油无损检测[J]. 激光与光电子学进展, 2020, 57(20): 203002.

Ranshi Ji, Xiaoyan Chen, Suzhen Liu, Libo Rao, Zhen Wang. Nondestructive Testing of Volatile Oil of Zanthoxylum Bungeanum Based on Hyperspectral Technique and IRIV-FOA-ELM Algorithm[J]. Laser & Optoelectronics Progress, 2020, 57(20): 203002.

参考文献

[1] 孙小文, 段志兴. 花椒属药用植物研究进展[J]. 药学学报, 1996( 3): 231- 240.

    Sun XW, Duan ZX. Research progress on medicinal plants of Zanthoxylum[J]. Acta Pharmaceutica Sinica, 1996( 3): 231- 240.

[2] 霍文兰. 超临界CO2萃取花椒挥发油的研究[J]. 食品科学, 2005, 26(8): 153-155.

    Huo W L. Study on technology of supercritical CO2 extraction of pricklyash peel volatile oils[J]. Food Science, 2005, 26(8): 153-155.

[3] 司昕蕾, 蔡秀荣, 曹瑞, 等. 基于GC-MS技术对甘肃陇南大红袍花椒挥发油柠檬烯芳樟醇含量的测定[J]. 中国现代中药, 2019, 21(2): 173-175, 193.

    Si X L, Cai X R, Cao R, et al. Determination of limonene and linalool in volatile oil of Dahongpao Zanthoxylum bungeanum in Longnan by GC-MS[J]. Modern Chinese Medicine, 2019, 21(2): 173-175, 193.

[4] 赵志峰, 雷鸣, 雷绍荣, 等. 两种四川花椒挥发油的成分分析[J]. 中国调味品, 2004, 29(10): 39-42.

    Zhao Z F, Lei M, Lei S R, et al. Analysis of chemical component of volatile oil from two kinds of Zanthoxylum bungeanum maxin in Sichuan[J]. China Condiment, 2004, 29(10): 39-42.

[5] 吴习宇, 祝诗平, 黄华, 等. 近红外光谱技术鉴别花椒产地[J]. 光谱学与光谱分析, 2018, 38(1): 68-72.

    Wu X Y, Zhu S P, Huang H, et al. Near infrared spectroscopy for determination of the geographical origin of Huajiao[J]. Spectroscopy and Spectral Analysis, 2018, 38(1): 68-72.

[6] 洪添胜, 乔军, Ning Wang, 等. 基于高光谱图像技术的雪花梨品质无损检测[J]. 农业工程学报, 2007, 23(2): 151-155.

    Hong T S, Qiao J, Ning W, et al. Non-destructive inspection of Chinese pear quality based on hyperspectral imaging technique[J]. Transactions of the CSAE, 2007, 23(2): 151-155.

[7] 潘蓓, 赵庚星, 朱西存, 等. 利用高光谱植被指数估测苹果树冠层叶绿素含量[J]. 光谱学与光谱分析, 2013, 33(8): 2203-2206.

    Pan B, Zhao G X, Zhu X C, et al. Estimation of chlorophyll content in apple tree canopy based on hyperspectral parameters[J]. Spectroscopy and Spectral Analysis, 2013, 33(8): 2203-2206.

[8] 饶利波, 陈晓燕, 庞涛. 基于光谱技术的Bipls算法结合CARS算法的苹果可溶性固形物含量检测[J]. 发光学报, 2019, 40(3): 389-395.

    Rao L B, Chen X Y, Pang T. Determination of apple soluble solids content using Bipls coupled with CARS algorithm based on spectral technology[J]. Chinese Journal of Luminescence, 2019, 40(3): 389-395.

[9] Pan W T. A new fruit fly optimization algorithm: taking the financial distress model as an example[J]. Knowledge-Based Systems, 2012, 26: 69-74.

[10] Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer[J]. Advances in Engineering Software, 2014, 69: 46-61.

[11] 刘子龙, 周玉文, 谭锦欣, . 基于, 等. PSO 原理的异孔径配水系统优化算法[J]. 北京工业大学学报, 2014, 40(11): 1717-1721.

    Liu Z L, Zhou Y W, Tan J X, et al. Optimization algorithm for a perforated water distribution system based on PSO[J]. Journal of Beijing University of Technology, 2014, 40(11): 1717-1721.

[12] 李鹏, 徐伟娜, 周泽远, 等. 基于改进万有引力搜索算法的微网优化运行[J]. 中国电机工程学报, 2014, 34(19): 3073-3079.

    Li P, Xu W N, Zhou Z Y, et al. Optimal operation of microgrid based on improved gravitational search algorithm[J]. Proceedings of the CSEE, 2014, 34(19): 3073-3079.

[13] 杜晓东. 果蝇优化算法在配电网规划中的应用[D]. 北京: 华北电力大学, 2014.

    Du XD. The application of fruit fly optimization algorithm in distribution network planning[D]. Beijing: North China Electric Power University, 2014.

[14] 肖正安. 改进FOA算法在语音信号盲分离中的应用[J]. 计算机工程与应用, 2013, 49(16): 201-204, 231.

    Xiao Z A. Application of improved FOA on audio signal blind separation[J]. Computer Engineering and Applications, 2013, 49(16): 201-204, 231.

[15] 潘文超. 应用果蝇优化算法优化广义回归神经网络进行企业经营绩效评估[J]. 太原理工大学学报(社会科学版), 2011, 29(4): 1-5.

    Pan W C. Using fruit fly optimization algorithm optimized general regression neural network to construct the operating performance of enterprises model[J]. Journal of Taiyuan University of Technology (Social Sciences Edition), 2011, 29(4): 1-5.

[16] Yun Y H, Wang W T, Tan M L, et al. A strategy that iteratively retains informative variables for selecting optimal variable subset in multivariate calibration[J]. Analytica Chimica Acta, 2014, 807: 36-43.

[17] Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1/2/3): 489-501.

[18] 褚小立. 化学计量学方法与分子光谱分析技术[M]. 北京: 化学工业出版社, 2011.

    Chu XL. Molecular spectroscopy analytical technology combined with chemometrics and its applications[M]. Beijing: Chemical Industry Press, 2011.

纪然仕, 陈晓燕, 刘素珍, 饶利波, 汪震. 基于高光谱技术和IRIV-FOA-ELM算法的花椒挥发油无损检测[J]. 激光与光电子学进展, 2020, 57(20): 203002. Ranshi Ji, Xiaoyan Chen, Suzhen Liu, Libo Rao, Zhen Wang. Nondestructive Testing of Volatile Oil of Zanthoxylum Bungeanum Based on Hyperspectral Technique and IRIV-FOA-ELM Algorithm[J]. Laser & Optoelectronics Progress, 2020, 57(20): 203002.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!