液晶与显示, 2016, 31 (2): 131, 网络出版: 2016-03-22   

偶氮掺杂液晶中热致光学非线性的测量

Measurement of optical nonlinearity originating from photo-induced thermal effect for azo-dye-doped liquid crystal
作者单位
上海交通大学 电子工程系, 上海 200240
摘要
偶氮掺杂液晶具有非常强的三阶光学非线性, 其非线性机理包括光致热效应等多种物理机理。为了测量偶氮掺杂液晶三阶光学非线性, 本文采用非线性干涉法, 定量测量了波长632.8 nm下, 光强变化所引起的折射率改变。为了测量得到热效应对掺杂液晶非线性的贡献, 我们提出了温度等效法, 通过在暗室中加热掺杂液晶样品产生与光照时相同的温度变化, 模拟出等效的热效应, 从而将热效应从多种非线性机理中单独区分出来; 通过测量此时的折射率改变, 以及对应的温度和光强变化, 得到了热效应导致的光学非线性。为了提高非线性干涉方法的灵敏度和消除环境震动带来的误差, 本文采用了双路干涉的方法, 使得测量精确性大为提高。测量结果表明:在波长632.8 nm下, 掺杂液晶三阶非线性系数n2为0.268 cm2/W, 其中热效应的贡献为0.091 cm2/W。
Abstract
The azo-dye-doped liquid crystals (ADDLCs) have strong third-order optical nonlinearity, which arises from multiple nonlinear mechanisms, including photo-induced thermal effect and isomerization effect, etc. In this paper, in order to obtain the value of third-order optical nonlinearity in ADDLCs, we use a method of nonlinear interferometry to measure the change of refractive index at the wavelength 632.8 nm, deriving from intensity’s change. A temperature equivalent method is proposed to quantitatively measure the contribution of thermal effect to the third-order optical nonlinearity, which simulates equivalent thermal effect through heating the ADDLC sample and producing the same temperature change as the irradiation light induces. Through this method, the thermal effect can be distinguished from multiple nonlinear effects. By measuring the change of refractive index and the corresponding temperature and intensity changes, we have obtained the value of third-order optical nonlinearity originating from thermal effect. Besides, a double-beam interferometry is used to improve the accuracy of measurement and eliminate the error from environmental shock, which increases the accuracy substantially. The measurement results show that, at the wavelength 632.8 nm, the third-order optical nonlinear coefficient n2of DR1-doped LC is 0.268 cm2/W, to which the contribution of thermal effect is 0.091 cm2/W.
参考文献

[1] REICHELT S, HUSSLER R, FTTERER G, et al. Depth cues in human visual perception and their realization in 3D displays[C]. Proc. SPIE 7690, Three-Dimensional Imaging, Visualization, and Display 2010 and Display Technologies and Applications for Defense, Security, and Avionics IV, 76900B, Orlando, Florida: SPIE, 2010.

[2] GENG J. Three-dimensional display technologies [J]. Advances in Optics and Photonics, 2013(5): 456-535.

[3] OSTEN S, KRGER S, STEINHOFF A. Spatial light modulators based on reflective micro-displays (auf reflektiven mikrodisplays basierende SMLs (spatial light modulators)) [J]. tm-Technisches Messen, 2006, 73(3): 149-156.

[4] HUEBSCHMAN M, MUNJULURI B, GARNER H. Dynamic holographic 3-D image projection[J]. Optics Express, 2003, 11(5): 437-445.

[5] SMALLEY D E, SMITHWICK Q Y J, BOVE V M, et al. Anisotropic leaky-mode modulator for holographic video displays[J]. Nature, 2013, 498(7454): 313-317.

[6] TAY S, BLANCHE P A, VOORAKARANAM R, et al. An updatable holographic three-dimensional display[J]. Nature, 2008, 451(7179): 694-698.

[7] BLANCHE P A, BABLUMIAN A, VOORAKARANAM R, et al. Holographic three-dimensional telepresence using large-area photorefractive polymer[J]. Nature, 2010, 468(7320): 80-83.

[8] TSUTSUMI N, KINASHI K, NONOMURA A, et al. Quickly updatable hologram images using poly(N-vinyl carbazole) (PVCz) photorefractive polymer composite[J]. Materials, 2012(5): 1477-1486.

[9] LI X, CHEN C P, GAO H Y, et al. Video-rate holographic display using azo-dye-doped liquid crystal[J]. Journal of Display Technology, 2014, 10(6): 438-443.

[10] LI X, CHEN C P, LI Y, et al. 51.1: Real-time holographic display using quantum dot doped liquid crystal[C]. SID Symposium Digest of Technical Papers, San Diego, CA: Wiley-Blackwell, 2014: 736-738.

[11] KHOO I C. Nonlinear optics of liquid crystalline materials[J]. Physics Reports, 2009, 471(5/6): 221-267.

[12] 于凤梅, 郭康贤, 王克强.Morse势阱中线性和三阶非线性光折射率的改变[J].发光学报, 2006, 26(5):569-574.

    YU F M, GUO K X , WANG K Q.Linear and third-order nonlinear change in the index of refraction in morse quantum well[J]. Chinese Journal of Luminescence, 2005, 26(5): 569-574. (in Chinese)

[13] 郑金桔, 郑著宏.CdSe/ZnSe自组装量子点中非线性系数随着温度的规律性变化[J].发光学报, 2010, 31(6):836-841.

    ZHENG J J, ZHENG Z H. An inerratic variation of nonlinear coefficient with temperature in cdse/znse self-assembled quantum dots[J].Chinese Journal of Luminescence, 2010, 31(6): 836-841.(in Chinese)

[14] JANA S, KONAR S. Induced focusing of two laser beams in cubic quintic nonlinear media [J]. Physica Scripta, 2004, 70(6): 354-360.

[15] BOYD R W. Nonlinear Optics[M]. New York: Academic Press, 2003.

[16] VEDUTA A P, KIRSANOV B P. Variation of the refractive index of liquids and glasses in a high intensity field of a ruby laser [J]. Journal of Experimental and Theoretical Physics, 1968, 27(5): 736-738.

[17] SHEIK-BAHAE M, SAID A A, VAN STRYLAND E W. High-sensitivity, single-beam n2 measurements [J]. Optics Letters, 1989, 14(17): 955-957.

[18] SMITH P W, TOMLINSON W J, EILENBERGER D J, et al. Measurement of electronic optical Kerr coefficients[J]. Optics Letters, 1981, 6(12): 581-583.

[19] ANDRADE A A, TENORIO E, CATUNDA T, et al. Discrimination between electronic and thermal contributions to the nonlinear refractive index of SrAlF5: Cr+3[J]. Journal of the Optical Society of America B-Optical Physics, 1999, 16(3): 395-400.

[20] LEE M R, WANG J R, LEE C R, et al. Optically switchable biphotonic photorefractive effect in dye-doped liquid crystal films [J]. Applied Physics Letters, 2004, 85(24): 5822-5824.

[21] KHOO I C, SLUSSARENKO S, GUENTHER B D, et al. Optically induced space-charge fields, dc voltage, and extraordinarily large nonlinearity in dye-doped nematic liquid crystals [J]. Optics Letters, 1998, 23(4): 253-255.

[22] CHOON KHOO I, SHIH M Y, WOOD M V, et al. Dye-doped photorefractive liquid crystals for dynamic and storage holographic grating formation and spatial light modulation [J]. Proceedings of the IEEE, 1999, 87(11): 1897-1911.

[23] FUH A Y G, LIN H C, MO T S, et al. Nonlinear optical property of azo-dye doped liquid crystals determined by biphotonic Z-scan technique [J]. Optics Express, 2005, 13(26): 10634-10641.

[24] OLBRIGHT G R, PEYGHAMBARIAN N. Interferometric measurement of the nonlinear index of refraction, n2, of CdSxSe1-x-doped glasses [J]. Applied Physics Letters, 1986, 48(18): 1184-1186.

周鹏程, 李燕, 陈超平, 李潇, 刘澍鑫, 袁亚超, 荣娜, 黄帅佳, 王科宇, 苏翼凯. 偶氮掺杂液晶中热致光学非线性的测量[J]. 液晶与显示, 2016, 31(2): 131. ZHOU Peng-cheng, LI Yan, CHEN Chao-ping, LI Xiao, LIU Shu-xin, YUAN Ya-chao, RONG Na, HUANG Shuai-jia, WANG Ke-yu, SU Yi-kai. Measurement of optical nonlinearity originating from photo-induced thermal effect for azo-dye-doped liquid crystal[J]. Chinese Journal of Liquid Crystals and Displays, 2016, 31(2): 131.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!