Photonics Research, 2020, 8 (11): 11001697, Published Online: Oct. 19, 2020  

Reducing the mode-mismatch noises in atom–light interactions via optimization of the temporal waveform Download: 617次

Author Affiliations
1 State Key Laboratory of Precision Spectroscopy, Quantum Institute for Light and Atoms, Department of Physics, East China Normal University, Shanghai 200062, China
2 School of Electronic Science and Applied Physics, Hefei University of Technology, Hefei 230009, China
3 Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, USA
4 School of Physics and Astronomy, and Tsung-Dao Lee Institute, Shanghai Jiao Tong University, Shanghai 200240, China
5 e-mail: chyuan@phy.ecnu.edu.cn
6 e-mail: lqchen@phy.ecnu.edu.cn
Copy Citation Text

Xiaotian Feng, Zhifei Yu, Bing Chen, Shuying Chen, Yuan Wu, Donghui Fan, Chun-Hua Yuan, L. Q. Chen, Z. Y. Ou, Weiping Zhang. Reducing the mode-mismatch noises in atom–light interactions via optimization of the temporal waveform[J]. Photonics Research, 2020, 8(11): 11001697.

References

[1] H. J. Kimble. The quantum internet. Nature, 2008, 453: 1023-1030.

[2] Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, J.-W. Pan. Experimental demonstration of a BDCZ quantum repeater node. Nature, 2008, 454: 1098-1101.

[3] N. Sangouard, C. Simon, H. De Riedmatten, N. Gisin. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys., 2011, 83: 33-80.

[4] P. Berg, S. Abend, G. Tackmann, C. Schubert, E. Giese, W. Schleich, F. Narducci, W. Ertmer, E. Rasel. Composite-light-pulse technique for high-precision atom interferometry. Phys. Rev. Lett., 2015, 114: 063002.

[5] G. Bao, S. Wu, S. Liu, W. Huang, Z. Li, L. Chen, C.-H. Yuan, W. Zhang. Enhancement of the signal-to-noise ratio of an atomic magnetometer by 10  dB. Phys. Rev. Appl., 2019, 11: 054075.

[6] J. Geremia, J. K. Stockton, H. Mabuchi. Suppression of spin projection noise in broadband atomic magnetometry. Phys. Rev. Lett., 2005, 94: 203002.

[7] M. Koschorreck, M. Napolitano, B. Dubost, M. Mitchell. Sub-projection-noise sensitivity in broadband atomic magnetometry. Phys. Rev. Lett., 2010, 104: 093602.

[8] J. Appel, E. Figueroa, D. Korystov, M. Lobino, A. Lvovsky. Quantum memory for squeezed light. Phys. Rev. Lett., 2008, 100: 093602.

[9] M. Lobino, C. Kupchak, E. Figueroa, A. Lvovsky. Memory for light as a quantum process. Phys. Rev. Lett., 2009, 102: 203601.

[10] F. Hudelist, J. Kong, C. Liu, J. Jing, Z. Ou, W. Zhang. Quantum metrology with parametric amplifier-based photon correlation interferometers. Nat. Commun., 2014, 5: 3049.

[11] C. M. Caves. Quantum-mechanical noise in an interferometer. Phys. Rev. D, 1981, 23: 1693-1708.

[12] Y. Ma, H. Miao, B. H. Pang, M. Evans, C. Zhao, J. Harms, R. Schnabel, Y. Chen. Proposal for gravitational-wave detection beyond the standard quantum limit through EPR entanglement. Nat. Phys., 2017, 13: 776-780.

[13] F. Wolfgramm, A. Cere, F. A. Beduini, A. Predojević, M. Koschorreck, M. W. Mitchell. Squeezed-light optical magnetometry. Phys. Rev. Lett., 2010, 105: 053601.

[14] W. Wasilewski, K. Jensen, H. Krauter, J. J. Renema, M. Balabas, E. S. Polzik. Quantum noise limited and entanglement-assisted magnetometry. Phys. Rev. Lett., 2010, 104: 133601.

[15] W. Du, J. Jia, J. Chen, Z. Ou, W. Zhang. Absolute sensitivity of phase measurement in an SU(1, 1) type interferometer. Opt. Lett., 2018, 43: 1051-1054.

[16] W. Wasilewski, T. Fernholz, K. Jensen, L. Madsen, H. Krauter, C. Muschik, E. S. Polzik. Generation of two-mode squeezed and entangled light in a single temporal and spatial mode. Opt. Express, 2009, 17: 14444-14457.

[17] B. Chen, C. Qiu, S. Chen, J. Guo, L. Chen, Z. Ou, W. Zhang. Atom-light hybrid interferometer. Phys. Rev. Lett., 2015, 115: 043602.

[18] L.-M. Duan, M. Lukin, J. I. Cirac, P. Zoller. Long-distance quantum communication with atomic ensembles and linear optics. Nature, 2001, 414: 413-418.

[19] K. Reim, J. Nunn, V. Lorenz, B. Sussman, K. Lee, N. Langford, D. Jaksch, I. Walmsley. Towards high-speed optical quantum memories. Nat. Photonics, 2010, 4: 218-221.

[20] T. Gustavson, P. Bouyer, M. Kasevich. Precision rotation measurements with an atom interferometer gyroscope. Phys. Rev. Lett., 1997, 78: 2046-2049.

[21] L. Zhou, S. Long, B. Tang, X. Chen, F. Gao, W. Peng, W. Duan, J. Zhong, Z. Xiong, J. Wang, M. Zhan. Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer. Phys. Rev. Lett., 2015, 115: 013004.

[22] J. Guo, L. Chen, P. Yang, Z. Li, Y. Wu, X. Feng, C.-H. Yuan, Z. Ou, W. Zhang. 88% conversion efficiency with an atomic spin wave mediated mode selection. Opt. Lett., 2017, 42: 1752-1755.

[23] X.-H. Bao, A. Reingruber, P. Dietrich, J. Rui, A. Dück, T. Strassel, L. Li, N.-L. Liu, B. Zhao, J.-W. Pan. Efficient and long-lived quantum memory with cold atoms inside a ring cavity. Nat. Phys., 2012, 8: 517-521.

[24] I. Usmani, M. Afzelius, H. De Riedmatten, N. Gisin. Mapping multiple photonic qubits into and out of one solid-state atomic ensemble. Nat. Commun., 2010, 1: 12.

[25] M. Bonarota, J. Le Gouët, T. Chaneliere. Highly multimode storage in a crystal. New J. Phys., 2011, 13: 013013.

[26] X. Guo, N. Liu, X. Li, Z. Ou. Complete temporal mode analysis in pulse-pumped fiber-optical parametric amplifier for continuous variable entanglement generation. Opt. Express, 2015, 23: 29369-29383.

[27] J. Li, Y. Liu, N. Huo, L. Cui, C. Feng, Z. Ou, X. Li. Pulsed entanglement measured by parametric amplifier assisted homodyne detection. Opt. Express, 2019, 27: 30552-30562.

[28] B. Brecht, D. V. Reddy, C. Silberhorn, M. Raymer. Photon temporal modes: a complete framework for quantum information science. Phys. Rev. X, 2015, 5: 041017.

[29] K. Hammerer, A. S. Sørensen, E. S. Polzik. Quantum interface between light and atomic ensembles. Rev. Mod. Phys., 2010, 82: 1041.

[30] M. Raymer, Z. Li, I. Walmsley. Temporal quantum fluctuations in stimulated Raman scattering: coherent-modes description. Phys. Rev. Lett., 1989, 63: 1586-1589.

[31] M. Raymer, I. Walmsley, J. Mostowski, B. Sobolewska. Quantum theory of spatial and temporal coherence properties of stimulated Raman scattering. Phys. Rev. A, 1985, 32: 332-344.

[32] N. Huo, Y. Liu, J. Li, L. Cui, X. Chen, R. Palivela, T. Xie, X. Li, Z. Ou. Direct temporal mode measurement for the characterization of temporally multiplexed high dimensional quantum entanglement in continuous variables. Phys. Rev. Lett., 2020, 124: 213603.

[33] I. Novikova, A. V. Gorshkov, D. F. Phillips, A. S. Sørensen, M. D. Lukin, R. L. Walsworth. Optimal control of light pulse storage and retrieval. Phys. Rev. Lett., 2007, 98: 243602.

[34] I. A. Walmsley, M. G. Raymer. Observation of macroscopic quantum fluctuations in stimulated Raman scattering. Phys. Rev. Lett., 1983, 50: 962-965.

[35] S. J. Kuo, D. T. Smithey, M. G. Raymer. Spatial interference of macroscopic light fields from independent Raman sources. Phys. Rev. A, 1991, 43: 4083-4086.

[36] M. Parniak, A. Leszczyński, W. Wasilewski. Coupling of four-wave mixing and Raman scattering by ground-state atomic coherence. Phys. Rev. A, 2016, 93: 053821.

[37] C. M. Caves. Quantum limits on noise in linear amplifiers. Phys. Rev. D, 1982, 26: 1817-1839.

[38] M. O. Scully, J. P. Dowling. Quantum-noise limits to matter-wave interferometry. Phys. Rev. A, 1993, 48: 3186-3190.

[39] M. Tse, H. Yu, N. Kijbunchoo, A. Fernandez-Galiana, P. Dupej, L. Barsotti, C. Blair, D. Brown, S. Dwyer, A. Effler. Quantum-enhanced advanced LIGO detectors in the era of gravitational-wave astronomy. Phys. Rev. Lett., 2019, 123: 231107.

[40] C. H. van der Wal, M. D. Eisaman, A. André, R. L. Walsworth, D. F. Phillips, A. S. Zibrov, M. D. Lukin. Atomic memory for correlated photon states. Science, 2003, 301: 196-200.

[41] M. F. Yanik, W. Suh, Z. Wang, S. Fan. Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency. Phys. Rev. Lett., 2004, 93: 233903.

[42] P. Sharapova, A. M. Pérez, O. V. Tikhonova, M. V. Chekhova. Schmidt modes in the angular spectrum of bright squeezed vacuum. Phys. Rev. A, 2015, 91: 043816.

Xiaotian Feng, Zhifei Yu, Bing Chen, Shuying Chen, Yuan Wu, Donghui Fan, Chun-Hua Yuan, L. Q. Chen, Z. Y. Ou, Weiping Zhang. Reducing the mode-mismatch noises in atom–light interactions via optimization of the temporal waveform[J]. Photonics Research, 2020, 8(11): 11001697.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!