激光与光电子学进展, 2013, 50 (8): 080023, 网络出版: 2013-08-08   

光纤色散在光信息处理中的应用 下载: 1160次

Application of Fiber Dispersion in All Optical Data Processing
作者单位
北京交通大学光波技术研究所 全光网络与现代通信网教育部重点实验室, 北京 100044
摘要
随着光纤通信和光网络技术的快速发展,基于光纤的光信息处理技术引起了越来越多的关注。介绍了几种基于光纤色散的光信息处理技术,包括时间透镜、基于时域展宽的光模数转换技术、光纤光栅传感器的波长解调、图像的时域串行编码技术、全光积分器、光相关器和光的时域频域卷积等。主要介绍了这些技术的原理、近期进展和优缺点。分析了目前基于光纤色散的光信息处理技术普遍存在的困难,对其发展趋势进行了探讨。通过对模式色散和色度色散的比较,探讨了模式色散在光信息处理技术中的发展前景,并介绍了两种基于模式色散的光信息处理技术。
Abstract
With the development of optical communication and optical networks, the optical data processing based on optical fiber has been investigated intensely. Several technologies of fiber dispersion based optical data processing are introduced, including time lens, time stretch based analog/digital (A/D) converter, fiber grating sensor′s wavelength demodulation, serial time-encoded amplified imaging, all optical integrator, convolution and correlation. Their principles, developments, advantages and disadvantages are discussed. The potential applications of optical data processing using modal dispersion are also discussed through comparing chromatic dispersion and modal dispersion and two kinds of modal dispersion based optical data processing are introduced.
参考文献

[1] Guoliang Li, Xuezhe Zheng, Jon Lexau, et al.. Ultralow-power high-performance Si photonic transmitter [C]. OFC, 2010. OMI2.

[2] 简水生. 光子技术最新进展将为人类进入低碳信息社会奠定基础 [J]. 光通信技术, 2011, 35(8): 1-5.

    Jian Shuisheng. Photon latest technologies will develop the basis of low-carbon information society of human beings [J]. Optical Communication Technology, 2011, 35(8): 1-5.

[3] 池剑锋, 李唐军, 贾楠, 等. 高精度色散管理实现160 Gb/s光时分复用信号100 km稳定无误码传输 [J]. 中国激光, 2011, 38(1): 0105003.

    Chi Jianfeng, Li Tangjun, Jia Nan, et al.. High-precision chromatic dispersion management completes 160 Gb/s OTDM signal 100-km stable error-free transmission [J]. Chinese J Lasers, 2011, 38(1): 0105003.

[4] 谭中伟, 陈志伟, 张晓兴, 等. 基于啁啾光纤光栅的时间展宽模数转换系统 [J]. 光学学报, 2012, 32(s1): s106001.

    Tan Zhongwei, Chen Zhiwei, Zhang Xiaoxing, et al.. The time-stretch analog-to-digital conversion based on chirped fiber Bragg grating [J]. Acta Optica Sinica, 2012, 32(s1): s106001.

[5] 杨秀峰, 彭磊, 童峥嵘, 等. 基于多波长激光器的带通微波光子滤波器设计 [J]. 光学学报, 2012, 32(2): 0206004.

    Yang Xiufeng, Peng Lei, Tong Zhengrong, et al.. Design of tunable bandpass photonic microwave filter based on multi-wavelength fiber laser[J]. Acta Optica Sinica, 2012, 32(2): 0206004.

[6] A L Gaeta, M A Foster, R Salem, et al.. Ultrafast waveform compression using a time-domain telescope [J]. Nature Photonics, 2009, 3(10): 581-585.

[7] Ali M Fard, Shalabh Gupta, Bahram Jalali. Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging [J]. Laser & Photonics Reviews, 2013, 7(2): 207-263.

[8] K Goda, K K Tsia, B Jalali. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena [J]. Nature, 2009, 458(30): 1145-1149.

[9] H Xia, C Wang, S Blais, et al.. Ultrafast and precise interrogation of fiber Bragg grating sensor based on wavelength-to-time mapping incorporating higher order dispersion [J]. J Lightwave Technol, 2010, 28(3): 254-261.

[10] M Ferrera, Y Park, L Razzari, et al.. On-chip CMOS-compatible all-optical integrator [J]. Nature Commun, 2010, 1: 29.

[11] Y Park, J Azana. Optical signal processors based on a time-spectrum convolution [J]. Opt Lett, 2010, 35(6): 796-798.

[12] S H Kim, K Goda, A Fard, et al.. Optical time-domain analog pattern correlator for high-speed real-time image recognition [J]. Opt Lett, 2011, 36(2): 220-222.

[13] Gerd Keiser. Optical Fiber Communications [M]. Noida: McGraw-Hill Education (India) Pvt Limited, 2008.

[14] 曹文华, 王勇, 刘颂豪. 光纤通信系统中基于光学相位共轭和预啁啾的色散及非线性补偿研究 [J]. 光学学报, 2012, 32(9): 0906005.

    Cao Wenhua, Wang Yong, Liu Songhao. Dispersion and nonlinearity compensation in optical fiber communication systems by optical phase conjugation incorporated pulse prechirp[J]. Acta Optica Sinica, 2012, 32(9): 0906005.

[15] 谭中伟, 宁提纲, 刘艳, 等. 基于啁啾光纤光栅的色散管理 [J]. 物理学报, 2006, 55(6): 2799-2803.

    Tan Zhongwei, Ning Tigang, Liu Yan, et al.. Application of dispersion compensator based on chirped fiber gratings in ultra long-haul DWDM system [J]. Acta Physcia Sinica, 2006, 55(6): 2799-2803.

[16] B H Kolner, M Nazarathy. Temporal imaging with a time lens [J]. Opt Lett, 1989, 14(12): 630-632.

[17] N K Berger, B Levit, S Atkins, et al.. Time-lens-based spectral analysis of optical pulses by electrooptic phase modulation [J]. Electron Lett, 2000, 36(19): 1644-1646.

[18] C V Bennett, B H Kolner. Upconversion time microscope demonstrating 103× magnification of femtosecond waveforms [J]. Opt Lett, 1999, 24(11): 783-785.

[19] L K H Mouradian, F Louradour, V Messager, et al.. Spectro-temporal imaging of femtosecond events [J]. IEEE J Quantum Electron, 2000, 36(7): 795-801.

[20] M A Foster, Reza Salem, David F Geraghty. Silicon-chip-based ultrafast optical oscilloscope [J]. Nature, 2008, 456(7218): 81-84.

[21] 李博, 谭中伟, 张晓兴. 利用交叉相位调制和四波混频制作的时间透镜的仿真分析 [J]. 物理学报, 2012, 61(1): 014203.

    Li Bo, Tan Zhongwei, Zhang Xiaoxing. The simulation and analysis of time lens using cross phase modulation and four-wave mixing [J]. Acta Physica Sinica, 2012, 61(1): 014203.

[22] José Azaa, Naum K. Berger, Boris Levit, et al.. Simplified temporal imaging systems for optical waveforms [J]. IEEE Photon Technol Lett, 2005, 17(1): 94-96.

[23] José Azaa, Miguel A Muriel. Real-time optical spectrum analysis based on the time-space duality in chirped fiber gratings [J]. IEEE J Quantum Electron, 2000, 36(5): 517-526.

[24] Yoshitomo Okawachi, Reza Salem, Adrea R Johnson, et al.. Asynchronous single-shot optical sampling of high-repetition-rate signals using temporal magnification [C]. OFC, 2013, OTu2D.4.

[25] José Azaa, Naum K Berger, Boris Levit, et al.. Time-to-frequency conversion of optical waveforms using a single time lens system [J]. Physica Scripta, 2005, 2005(T118): 115-117.

[26] Zhongwei Tan, Yanling Chang, Wenhua Ren, et al.. Temporal-spectral Imaging of optical pulses using time lens [C]. SPIE, 2008, 7135: 71352E.

[27] Jacob S Levy Alexander Gondarenko, Mark A Foster, Amy C Turner-Foster, et al.. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects [J]. Nature Photonics, 2010, 4(1): 37-40.

[28] M. Fridman, Alessandro Farsi, Yoshitomo Okawachi, et al.. Demonstration of temporal cloaking [J]. Nature, 2012, 481(7379): 62-65.

[29] George C Valley. Photonic analog-to-digital converters [J]. Opt Express, 2007, 15(5): 1955-1982.

[30] K Goda, B Jalali. Dispersive Fourier transformation for fast continuous single-shot measurements [J]. Nature Photonics, 2013, 7(2): 102-112.

[31] Y Han, B Jalali. Photonic time-stretched analog-to-digital converter: fundamental concepts and practical con-siderations [J]. J Lightwave Technol, 2003, 21(2): 3085-3103.

[32] A M Fard, B Buckley, S Zlatanovic, et al.. All-optical time-stretch digitizer [J]. Appl Phys Lett, 2012, 101(5): 051113.

[33] M H Asghari, B Jalali. Stereopsis-inspired time-stretched amplified real-time spectrometer (STARS) [J]. IEEE Photon Journal, 2012, 4(5): 1693-1701.

[34] Eric D Diebold, Nick K Hon, Zhongwei Tan, et al.. Giant tunable optical dispersion using chromo-modal excitation of a multimode waveguide [J]. Opt. Express, 2011, 19(24): 23809-23817.

[35] M L Filograno, P Corredera Guillen, A Rodriguez-Barrios, et al.. Real-time monitoring of railway traffic using fiber Bragg grating sensors [J]. IEEE Sensors Journal, 2012, 12, (1): 85-92.

[36] L S Yan, Z T Zhang, P Wang, et al.. Fiber sensors for strain measurements and axle counting in high-speed railway applications [J]. IEEE Sensors Journal, 2011, 11(7): 1587-1594.

[37] H Y Fu, H L Liu, H Y Tam, et al.. Novel dispersion compensating module based interrogator for fiber bragg grating sensors [C]. ECOC′2007, 2007.

[38] Keisuke Goda, Kevin K Tsia, Bahram Jalali. Amplied dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading [J]. Appl Phys Lett, 2008, 93(13): 131109.

[39] K Goda, A Ayazi, D R Gossett, et al.. High-throughput single-microparticle imaging flow analyzer [J]. PNAS, 2012, 109(29): 11630-11635.

[40] K Goda, D R Solli, B Jalali. Real-time optical reflectometry enabled by amplified dispersive Fourier transformation [J]. Appl Phys Lett, 2008, 93(3): 031106.

[41] Kevin K Tsia, Keisuke Goda, Dale Capewell, et al.. Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery [J]. Opt Lett, 2009, 34(14): 2099-2101.

[42] K Goda, A Mahjoubfar, C Wang, et al.. Hybrid dispersion laser scanner, Scientific Reports, 2012, 2: 445.

[43] Y Park, J Azana. Ultrafast photonic intensity integrator [J]. Opt Lett, 2009, 34(8): 1156-1158.

[44] Y Park, J Azana. Optical signal processors based on a time-spectrum convolution [J]. Opt Lett, 2010, 35(6): 796-798.

[45] M C Cardakli, S Lee, A E Willner. Reconfigurable optical packet header recognition and routing using time-to-wavelength mapping and tunable fiber Bragg grating for correlation and decoding [J]. IEEE Photon Technol Lett, 2000, 12(5): 552-554.

[46] Roderick Peter Webb, Xuelin Yang, Robert J Manning, et al.. All-optical binary pattern recognition at 42 Gb/s [J]. J Lightwave Technol, 2009, 27(13): 2240-2244.

[47] F Li, Yongwoo Park, Jos Azana. Single-shot real-time frequency chirp characterization of telecommunication optical signals based on balanced temporal optical differentiation [J]. Opt Lett, 2009, 34(18): 2742-2744.

[48] A Pasquazi, Marco Peccianti, Yongwoo Park, et al.. Sub-picosecond phase-sensitive optical pulse characterization on a chip [J]. Nature Photonics, 2010, 5(10): 618-623.

[49] L Grüner-Nielsen, Y Sun, J W Nicholson, et al.. Few mode transmission fiber with low DGD, low mode coupling and low loss [C]. OFC/NFOEC, 2012. PDP5A1.

[50] Sercan O. Arlk, Daulet Askarov, Joseph M Kahn. Effect of mode coupling on signal processing complexity in mode-division multiplexing [J]. J Lightwave Technol, 2013, 31(3): 423-431.

[51] Tan Zhongwei, Wang Chao, Diebold, et al.. Real-time wavelength and bandwidth-independent optical integrator based on modal dispersion [J]. Opt Express, 2012, 20(13): 14109-14116.

[52] K Jespersen, Z Li, L Grüner-Nielsen, et al.. Measuring distributed mode scattering in long, few-moded fibers [C]. OFC/NFOEC, 2012. OTh3I.4.

[53] Keang-Po Ho, Joseph M Kahn. Statistics of group delays in multimode fiber with strong mode coupling [J]. J Lightwave Technol, 2011, 29, (21): 3119-3218.

谭中伟, 秦凤杰, 任文华, 刘艳. 光纤色散在光信息处理中的应用[J]. 激光与光电子学进展, 2013, 50(8): 080023. Tan Zhongwei, Qin Fengjie, Ren Wenhua, Liu Yan. Application of Fiber Dispersion in All Optical Data Processing[J]. Laser & Optoelectronics Progress, 2013, 50(8): 080023.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!