光学学报, 2019, 39 (4): 0427002, 网络出版: 2019-05-10   

基于偶极阻塞效应的单光子水平电磁感应透明 下载: 985次

Single-Photon Level Electromagnetically Induced Transparency Based on Dipole Blockade Effect
作者单位
长春大学理学院材料设计与量子模拟实验室, 吉林 长春 130022
引用该论文

严冬, 王彬彬, 白文杰, 田甜. 基于偶极阻塞效应的单光子水平电磁感应透明[J]. 光学学报, 2019, 39(4): 0427002.

Dong Yan, Binbin Wang, Wenjie Bai, Tian Tian. Single-Photon Level Electromagnetically Induced Transparency Based on Dipole Blockade Effect[J]. Acta Optica Sinica, 2019, 39(4): 0427002.

参考文献

[1] Harris S E. Electromagnetically induced transparency[J]. Physics Today, 1997, 50(7): 36-42.

    Harris S E. Electromagnetically induced transparency[J]. Physics Today, 1997, 50(7): 36-42.

[2] Harris S E, Field J E. Imamo lu A. Nonlinear optical processes using electromagnetically induced transparency [J]. Physical Review Letters, 1990, 64(10): 1107-1110.

    Harris S E, Field J E. Imamo lu A. Nonlinear optical processes using electromagnetically induced transparency [J]. Physical Review Letters, 1990, 64(10): 1107-1110.

[3] Fleischhauer M, Imamoglu A, Marangos J P. Electromagnetically induced transparency: optics in coherent media[J]. Reviews of Modern Physics, 2005, 77(2): 633-673.

    Fleischhauer M, Imamoglu A, Marangos J P. Electromagnetically induced transparency: optics in coherent media[J]. Reviews of Modern Physics, 2005, 77(2): 633-673.

[4] Kasapi A, Jain M, Yin G Y, et al. Electromagnetically induced transparency: propagation dynamics[J]. Physical Review Letters, 1995, 74(13): 2447-2450.

    Kasapi A, Jain M, Yin G Y, et al. Electromagnetically induced transparency: propagation dynamics[J]. Physical Review Letters, 1995, 74(13): 2447-2450.

[5] Hau L V, Harris S E, Dutton Z, et al. Light speed reduction to 17 metres per second in an ultracold atomic gas[J]. Nature, 1999, 397(6720): 594-598.

    Hau L V, Harris S E, Dutton Z, et al. Light speed reduction to 17 metres per second in an ultracold atomic gas[J]. Nature, 1999, 397(6720): 594-598.

[6] Kash M M, Sautenkov V A, Zibrov A S, et al. Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas[J]. Physical Review Letters, 1999, 82(26): 5229-5232.

    Kash M M, Sautenkov V A, Zibrov A S, et al. Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas[J]. Physical Review Letters, 1999, 82(26): 5229-5232.

[7] Cui C L, Jia J K, Gao J W, et al. Ultraslow and superluminal light propagation in a four-level atomic system[J]. Physical Review A, 2007, 76(3): 033815.

    Cui C L, Jia J K, Gao J W, et al. Ultraslow and superluminal light propagation in a four-level atomic system[J]. Physical Review A, 2007, 76(3): 033815.

[8] Lukin M D. Colloquium: trapping and manipulating photon states in atomic ensembles[J]. Reviews of Modern Physics, 2003, 75(2): 457-472.

    Lukin M D. Colloquium: trapping and manipulating photon states in atomic ensembles[J]. Reviews of Modern Physics, 2003, 75(2): 457-472.

[9] Phillips D F, Fleischhauer A, Mair A, et al. Storage of light in atomic vapor[J]. Physical Review Letters, 2001, 86(5): 783-786.

    Phillips D F, Fleischhauer A, Mair A, et al. Storage of light in atomic vapor[J]. Physical Review Letters, 2001, 86(5): 783-786.

[10] He Q Y, Xue Y, Artoni M, et al. Coherently induced stop-bands in resonantly absorbing and inhomogeneously broadened doped crystals[J]. Physical Review B, 2006, 73(19): 195124.

    He Q Y, Xue Y, Artoni M, et al. Coherently induced stop-bands in resonantly absorbing and inhomogeneously broadened doped crystals[J]. Physical Review B, 2006, 73(19): 195124.

[11] Wu J H. La Rocca G C, Artoni M. Controlled light-pulse propagation in driven color centers in diamond[J]. Physical Review B, 2008, 77(11): 113106.

    Wu J H. La Rocca G C, Artoni M. Controlled light-pulse propagation in driven color centers in diamond[J]. Physical Review B, 2008, 77(11): 113106.

[12] Schmidt H, Ram R J. All-optical wavelength converter and switch based on electromagnetically induced transparency[J]. Applied Physics Letters, 2000, 76(22): 3173-3175.

    Schmidt H, Ram R J. All-optical wavelength converter and switch based on electromagnetically induced transparency[J]. Applied Physics Letters, 2000, 76(22): 3173-3175.

[13] Brown A W, Xiao M. All-optical switching and routing based on an electromagnetically induced absorption grating[J]. Optics Letters, 2005, 30(7): 699-701.

    Brown A W, Xiao M. All-optical switching and routing based on an electromagnetically induced absorption grating[J]. Optics Letters, 2005, 30(7): 699-701.

[14] Saffman M, Walker T G. Creating single-atom and single-photon sources from entangled atomic ensembles[J]. Physical Review A, 2002, 66(6): 065403.

    Saffman M, Walker T G. Creating single-atom and single-photon sources from entangled atomic ensembles[J]. Physical Review A, 2002, 66(6): 065403.

[15] Walker T G. Strongly interacting photons[J]. Nature, 2012, 488(7409): 39-40.

    Walker T G. Strongly interacting photons[J]. Nature, 2012, 488(7409): 39-40.

[16] Peyronel T, Firstenberg O, Liang Q Y, et al. Quantum nonlinear optics with single photons enabled by strongly interacting atoms[J]. Nature, 2012, 488(7409): 57-60.

    Peyronel T, Firstenberg O, Liang Q Y, et al. Quantum nonlinear optics with single photons enabled by strongly interacting atoms[J]. Nature, 2012, 488(7409): 57-60.

[17] Gorshkov A V, Nath R, Pohl T. Dissipative many-body quantum optics in Rydberg media[J]. Physical Review Letters, 2013, 110(15): 153601.

    Gorshkov A V, Nath R, Pohl T. Dissipative many-body quantum optics in Rydberg media[J]. Physical Review Letters, 2013, 110(15): 153601.

[18] Gorniaczyk H, Tresp C, Schmidt J, et al. Single-photon transistor mediated by interstate Rydberg interactions[J]. Physical Review Letters, 2014, 113(5): 053601.

    Gorniaczyk H, Tresp C, Schmidt J, et al. Single-photon transistor mediated by interstate Rydberg interactions[J]. Physical Review Letters, 2014, 113(5): 053601.

[19] Tiarks D, Baur S, Schneider K, et al. Single-photon transistor using a Förster resonance[J]. Physical Review Letters, 2014, 113(5): 053602.

    Tiarks D, Baur S, Schneider K, et al. Single-photon transistor using a Förster resonance[J]. Physical Review Letters, 2014, 113(5): 053602.

[20] Chen W, Beck K M, Bucker R, et al. All-optical switch and transistor gated by one stored photon[J]. Science, 2013, 341(6147): 768-770.

    Chen W, Beck K M, Bucker R, et al. All-optical switch and transistor gated by one stored photon[J]. Science, 2013, 341(6147): 768-770.

[21] Friedler I, Petrosyan D, Fleischhauer M, et al. Long-range interactions and entanglement of slow single-photon pulses[J]. Physical Review A, 2005, 72(4): 043803.

    Friedler I, Petrosyan D, Fleischhauer M, et al. Long-range interactions and entanglement of slow single-photon pulses[J]. Physical Review A, 2005, 72(4): 043803.

[22] Saffman M, Walker T G, Mølmer K. Quantum information with Rydberg atoms[J]. Reviews of Modern Physics, 2010, 82(3): 2313-2363.

    Saffman M, Walker T G, Mølmer K. Quantum information with Rydberg atoms[J]. Reviews of Modern Physics, 2010, 82(3): 2313-2363.

[23] Tong D, Farooqi S M, Stanojevic J, et al. Local blockade of Rydberg excitation in an ultracold gas[J]. Physical Review Letters, 2004, 93(6): 063001.

    Tong D, Farooqi S M, Stanojevic J, et al. Local blockade of Rydberg excitation in an ultracold gas[J]. Physical Review Letters, 2004, 93(6): 063001.

[24] Pritchard J D, Maxwell D, Gauguet A, et al. Cooperative atom-light interaction in a blockaded Rydberg ensemble[J]. Physical Review Letters, 2010, 105(19): 193603.

    Pritchard J D, Maxwell D, Gauguet A, et al. Cooperative atom-light interaction in a blockaded Rydberg ensemble[J]. Physical Review Letters, 2010, 105(19): 193603.

[25] Ates C, Sevinçli S, Pohl T. Electromagnetically induced transparency in strongly interacting Rydberg gases[J]. Physical Review A, 2011, 83(4): 041802.

    Ates C, Sevinçli S, Pohl T. Electromagnetically induced transparency in strongly interacting Rydberg gases[J]. Physical Review A, 2011, 83(4): 041802.

[26] Sevinçli S, Henkel N, Ates C, et al. Nonlocal nonlinear optics in cold Rydberg gases[J]. Physical Review Letters, 2011, 107(15): 153001.

    Sevinçli S, Henkel N, Ates C, et al. Nonlocal nonlinear optics in cold Rydberg gases[J]. Physical Review Letters, 2011, 107(15): 153001.

[27] Petrosyan D, Otterbach J, Fleischhauer M. Electromagnetically induced transparency with Rydberg atoms[J]. Physical Review Letters, 2011, 107(21): 213601.

    Petrosyan D, Otterbach J, Fleischhauer M. Electromagnetically induced transparency with Rydberg atoms[J]. Physical Review Letters, 2011, 107(21): 213601.

[28] Zhang Z Y, Zheng H B, Yao X, et al. Phase modulation in Rydberg dressed multi-wave mixing processes[J]. Scientific Reports, 2015, 5: 10462.

    Zhang Z Y, Zheng H B, Yao X, et al. Phase modulation in Rydberg dressed multi-wave mixing processes[J]. Scientific Reports, 2015, 5: 10462.

[29] Zhang Z Y. Gu B L, et al. Parametric amplification of Rydberg six- and eight-wave mixing processes[J]. Photonics Research, 2018, 6(7): 713.

    Zhang Z Y. Gu B L, et al. Parametric amplification of Rydberg six- and eight-wave mixing processes[J]. Photonics Research, 2018, 6(7): 713.

[30] Liu Y M, Tian X D, Yan D, et al. Nonlinear modifications of photon correlations via controlled single and double Rydberg blockade[J]. Physical Review A, 2015, 91(4): 043802.

    Liu Y M, Tian X D, Yan D, et al. Nonlinear modifications of photon correlations via controlled single and double Rydberg blockade[J]. Physical Review A, 2015, 91(4): 043802.

严冬, 王彬彬, 白文杰, 田甜. 基于偶极阻塞效应的单光子水平电磁感应透明[J]. 光学学报, 2019, 39(4): 0427002. Dong Yan, Binbin Wang, Wenjie Bai, Tian Tian. Single-Photon Level Electromagnetically Induced Transparency Based on Dipole Blockade Effect[J]. Acta Optica Sinica, 2019, 39(4): 0427002.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!