红外与激光工程, 2019, 48 (8): 0825003, 网络出版: 2019-09-03  

非相似立体视觉模型构建与验证

Model establishment and validation of non-similar stereo vision
作者单位
1 陆军工程大学石家庄校区 电子与光学工程系, 河北 石家庄 050003
2 中国人民解放军63850部队, 吉林 白城 137001
3 中国人民解放军32181部队, 陕西 西安 710000
摘要
将非相似成像理论引入到立体视觉理论中, 探索了一种非相似立体视觉机制, 建立了空间目标三维定位模型和深度精度模型。根据流行的非相似等距投影理论, 对非相似立体视觉三维定位方程进行了数理推导, 并实验验证了所建模型的有效性。结果表明: 利用三维定位模型可以准确地获取大空域场景中不同深度的多个目标位置信息, 定位误差随着目标深度的增大而缓慢变大, 在30 m深度处的定位误差达到1.32 m, 误差变化规律与深度精度模型结果吻合良好, 且误差值远小于相似立体视觉模型的定位误差。所建模型的优势是无需对非相似畸变图像进行校正, 便可较好地得到空间目标的三维坐标, 研究工作对于拓展非相似成像理论在大空域态势感知、目标侦察等领域的应用具有重要意义。
Abstract
By introducing the popular equidistant projection theory, a non-similar stereo vision was explored, and the three-dimensional (3D) location model and depth precision model were established. The correctness of proposed models was verified through carring out the 3D location experiment with a 115°×90° infrared stereo vision system. From the experimental results, the targets in different depths and large-airspace scene were located successfully. The depth error increases smoothly with increasing target depth, and it reached 1.32 m in the depth of 30 m. The error variation of 3D location model matched well with the results of depth precision model, and the whole error was obviously less than that of similar stereo vision model. The advantages of the proposed model is that the 3D coordinates of space target can be obtained directly without correcting the non-similar distorted images, and it contributes to enriching and improving the theory of stereo vision, and will help to spread the application of non-similar imaging theory in the fields of large-airspace situation awareness, target detection and so on.
参考文献

[1] Jin Tao, Jia Hongzhi, Hou Wenmei, et al. Evaluating 3D position and velocity of subject in parabolic flight experiment by use of the binocular stereo vision measurement[J]. Chinese Optics Letters, 2010, 8(6): 601-605.

[2] He Yu, Wang Lingxue, Cai Yi, et al. Research progress and prospect of catadioptric panoramic system [J]. Chinese Optics, 2017, 10(5): 681-698. (in Chinese)

[3] Ni Zhangsong, Gu Yi, Liu Qingling, et al. Flexible calibration method for binocular stereo vision in large field of view [J]. Optics and Precision Engineering, 2017, 25(7): 1882-1889. (in Chinese)

[4] Yang Ning, Shen Jingshi, Zhang Jiande, et al. Autonomous measurement of relative attitude and position for spatial non-cooperative spacecraft based on stereo vision[J]. Optics and Precision Engineering, 2017, 25(5): 1331-1339. (in Chinese)

[5] Wang Xin, Wang Xiangjun. Multiple targets sparse matching for binocular vision positioning system with large field of view [J]. Infrared and Laser Engineering, 2018, 47(7): 0726001. (in Chinese)

[6] Shi Qing, Li Chang, Wang Chunbao, et al. Design and implementation of an omnidirectional vision system for robot perception[J]. Mechatronics, 2017, 41: 58-66.

[7] Qi Bingjie, Liu Jinguo, Zhang Boyan, et al. Research on matching performance of SIFT and SURF algorithms for high resolution remote sensing image[J]. Chinese Optics, 2017, 10(3): 331-339. (in Chinese)

[8] Ameer H, Rehan H, Muhammad M K, et al. Stabilization of panoramic videos from mobile multi-camera platforms[J]. Image and Vision Computing, 2015, 37: 20-30.

[9] Pedersen L, Bualat M, Kunz C, et al. Instrument deployment for Mars rovers[C]//Proc of IEEE, International Conference on Robotics & Automation, 2003, 2: 2535-2542.

[10] Wang Baofeng, Zhou Jianliang, Tang Geshi, et al. Research on visual localization method of lunar rover[J]. Sci Sinica Inform, 2014, 44(4): 452-460.

[11] Kim D, Choi J, Yoo H, et al. Rear obstacle detection system with fisheye stereo camera using HCT[J]. Expert Systems with Applications, 2015, 42(17-18): 6295-6305.

[12] Johannes S, Cyrill S, Wolfgang F. On the accuracy of dense fisheye stereo[J]. IEEE Robotics and Autonation Letters, 2016, 1(1): 227-234.

[13] Huang Fuyu, Shen Xueju, He Yongqiang, et al. Performance analysis of super-wide field of view imaging system used for space target detection[J]. Infrared and Laser Engineering, 2015, 44(10): 3135-3140.

[14] Wang Zhiqiang, Cheng Hong, Tan Haifeng, et al. Registration algorithm of aerial remote sensing images based on lateral inhibition competition[J]. Infrared and Laser Engineering, 2018, 47(S1): S126005.

[15] Akhil V, Abdul B, Vishak P V. Stereo vision system implemented on FPGA[J]. Procedia Technology, 2016, 24: 1105-1112.

黄富瑜, 郑喆, 李佩军, 谢大兵, 黄欣鑫. 非相似立体视觉模型构建与验证[J]. 红外与激光工程, 2019, 48(8): 0825003. Huang Fuyu, Zheng Zhe, Li Peijun, Xie Dabing, Huang Xinxin. Model establishment and validation of non-similar stereo vision[J]. Infrared and Laser Engineering, 2019, 48(8): 0825003.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!