中国激光, 2015, 42 (12): 1203002, 网络出版: 2015-12-08   

7075 铝合金激光多点冲击诱导残余应力的数值模拟

Numerical Simulation of Residual Stress Induced in 7075 Aluminum Alloy by Repeated High-Power Laser Pulses
作者单位
安徽工业大学机械工程学院, 安徽 马鞍山 243002
摘要
激光冲击强化技术是一种新型的材料表面改性技术。在实际应用中,由于激光光斑直径通常在20 mm 以下,工件表面大范围的激光冲击强化需要采用多个光斑搭接。运用实验和数值模拟的方法,探讨了光斑在不同中心距下诱导的残余应力场的分布规律,研究了不同搭接率对残余应力分布的影响,以及两种不同加载顺序下表面残余应力的分布特性。结果表明:相邻光斑中心距对两光斑之间区域的残余应力有重要影响,随着两光斑中心距的减小,相邻光斑之间区域的应力场由残余拉应力转变为残余压应力;搭接率越大,获得的残余压应力幅值越大,残余应力分布越均匀;从中间到两侧的多点冲击方式能获得较大、较均匀的残余压应力。
Abstract
Laser shock peening (LSP) is a novel surface modified technique. In practical applications, due to the diameter of laser beam smaller than 20 mm, the overlapping LSP technology needs to process workpiece surface with large area. The residual stress fields induced by laser spots in different center distances are discussed with finite element methods and experiments. The influences of overlapping rate on the distributions of residual stress are investigated. The characteristics of residual stress distributions induced by different shocking sequences are also analyzed. The results show that the center distances of laser spots have significant influences on the residual stress of region between two laser spots. With the center distances of two laser spots decreasing, the residual stress fields at the region between two laser spots turn from tensile residual stress into compressive residual stress. The magnitude of compressive residual stress is increased with the increment of laser spot overlapping rate, and the distributions of residual stress generated by larger overlapping rate are more uniform. The multiple shocking sequence of mid-left-right can induce a large and uniform compressive residual stress field .
参考文献

[1] Zhang Xingquan, Li Huan, Yu Xiaoliu, et al.. Investigation on effect of laser shock processing on fatigue crack initiation and its growth in aluminum alloy plate[J]. Materials and Design, 2015, 65: 425-431.

[2] 李兴成, 张永康, 卢雅琳, 等. 激光冲击AZ31镁合金抗腐蚀性能研究[J]. 中国激光, 2014, 41(4): 04030021.

    Li Xingcheng, Zhang Yongkang, Lu Yalin, et al.. Research of corrosion resistance for AZ31 magnesium alloy by laser shock processing [J]. Chinese J Lasers, 2014, 41(4): 0403021.

[3] B P Fairand, B A Wilcox, W J Gallagher, et al.. Laser shock-induced microstructural and mechanical property changes in 7075 aluminum [J]. Journal of Applied Physics, 1972, 43(9): 3893-3895.

[4] M Achintha, D Nowell. Eigenstrain modelling of residual stresses generated by laser shock peening[J]. Journal of Materials Processing Technology, 2011, 211(6): 1091-1101.

[5] W Braisted, R Brockman. Finite element simulation of laser shock peening[J]. International Journal of Fatigue, 1999, 21(7): 719-724.

[6] K Ding, L Ye. FEM simulation of two sided laser shock peening of thin sections of Ti-6Al-4V alloy[J]. Surface Engineering, 2003, 19 (2): 127-133.

[7] 张永康, 周立春, 任旭东, 等. 激光冲击TC4残余应力场的试验及有限元分析[J]. 江苏大学学报: 自然科学版, 2009, 30(1): 10-13.

    Zhang Yongkang, Zhou Lichun, Ren Xudon, et al.. Experiment and finite element analysis on residual stress field in laser shock processing TC4 titanium alloy[J]. Journal of Jiangsu University: Natural Science Edition, 2009, 30(1): 10-13.

[8] 姜银方, 来彦玲, 张磊, 等. 激光冲击材料表面“残余应力洞”形成规律与分析[J]. 中国激光, 2010, 37(8): 2073-2079.

    Jiang Yinfang, Lai Yanling, Zhang Lei, et al.. Investigation of residual stress hole on a metal surface by laser shock[J]. Chinese J Lasers, 2010, 37(8): 2073-2079.

[9] 聂祥樊, 何卫锋, 臧顺来, 等. 激光喷丸提高TC11 钛合金高周疲劳性能的试验研究[J]. 中国激光, 2013, 40(8): 0803006.

    Nie Xiangfan, He Weifeng, Zang Shunlai, et al.. Experimental study on improving high-cycle fatigue performance of TC11 titanium alloy by laser shock peening[J]. Chinese J Lasers, 2013, 40(8): 0803006.

[10] 陆莹, 赵吉宾, 乔红超. TiAl合金激光冲击强化工艺探索及强化机制研究[J]. 中国激光, 2014, 41(10): 1003013.

    Lu Ying, Zhao Jibin, Qiao Hongchao. Investigation of technical and strengthening mechanism research of TiAl alloy by laser shock peening [J]. Chinese J Lasers, 2014, 41(10): 1003013.

[11] 张兴权, 张永康, 周建忠, 等. 弹性预加载下板料激光喷丸成形特性[J]. 中国激光, 2008, 35(7): 1095-1100.

    Zhang Xingquan, Zhang Yongkang, Zhou Jianzhong, et al.. Characteristics of deformation of plate by laser peening under the elastic preloading condition[J]. Chinese J Lasers, 2008, 35(7): 1095-1100.

[12] P Peyre, A Sollier, I Chaieb, et al.. FEM simulation of residual stresses induced by laser peening[J]. The European Physical Journal Applied Physics, 2003, 23(2): 83-88.

[13] G R Johnson, W H Cook. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]. 7 th International Symposium on Ballistics, 1983, 21: 541-547.

[14] R Fabbro, J Fournier, P Ballard, et al.. Physical study of laser-produced plasma in confined geometry[J]. Journal of Applied Physics, 1990, 68(2): 775-784.

[15] P Peyre, L Berthe, X Scherpereel, et al.. Laser-shock processing of aluminium-coated 55C1 steel in water-confinement regime, characterization and application to high-cycle fatigue behaviour[J]. Journal of Materials Science, 1998, 33(6): 1421-1429.

[16] 张凌峰, 任凤章, 周合玉, 等. 激光冲击过程中等离子体实际作用面积实验研究[J]. 中国激光, 2009, 36(5): 1224-1228.

    Zhang Lingfeng, Ren Fengzhang, Zhou Heyu, et al.. Experimental study on actual role area of plasma in laser shock processing[J]. Chinese J Lasers, 2009, 36(5): 1224-1228.

[17] W W Zhang, Y L Yao. Micro scale laser shock processing of metallic components[J]. Journal of Manufacturing Science and Engineering, 2002, 124(2): 369-378.

[18] F Z Dai, J Z Lu, Y K Zhang, et al.. Surface integrity of micro-dent arrays fabricated by a novel laser shock processing on the surface of ANSI 304 stainless steel [J]. Vacuum, 2014, 106: 69-74.

[19] 柳沅汛, 王曦, 吴先前, 等. 激光冲击处理304不锈钢表面的形貌特征及其机理分析[J]. 中国激光, 2013, 40(1): 0103004.

    Liu Yuanxun, Wang Xi, Wu Xianqian, et al.. Surface morphology and deformation mechanism of 304 stainless steel treated by laser shock peening[J]. Chinese J Lasers, 2013, 40(1): 0103004.

张兴权, 李欢, 黄志来, 张鑫, 佘建平, 章艳, 段士伟. 7075 铝合金激光多点冲击诱导残余应力的数值模拟[J]. 中国激光, 2015, 42(12): 1203002. Zhang Xingquan, Li Huan, Huang Zhilai, Zhang Xin, She Jianping, Zhang Yan, Duan Shiwei. Numerical Simulation of Residual Stress Induced in 7075 Aluminum Alloy by Repeated High-Power Laser Pulses[J]. Chinese Journal of Lasers, 2015, 42(12): 1203002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!