光电子快报(英文版), 2023, 19 (3): 170, Published Online: Mar. 18, 2023  

Research on determining the position of zero optical path difference with the wavelet transform

Author Affiliations
1 Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
2 University of Science and Technology of China, Hefei 230026, China
Abstract
Due to the error of digital sampling, there is a deviation between the zero optical path difference (ZOPD) detection position of the interference signal in the infrared gas analyzer and the actual position. To solve this problem, a high-precision detection method of the ZOPD position based on wavelet transform is proposed. Firstly, the wavelet envelope curve of the interference signal is obtained by the wavelet transform, which can obtain the phase information and amplitude information of the maximum modulation position, and then the optimal ZOPD position is calculated by using the amplitude and phase information. The experimental results show that the error of the wavelet transform method is 19.617 nm, and the relative error is reduced by 93.11% compared with the peak method.
References

[1] WEI D, AKETAGAWA M. Securing noise-adaptive selection of interference signal by nonlinear detection[J]. Optics express, 2018, 26(15): 19225-19234.

[2] HUANG Y L, GAO J, ZHANG L Y, et al. Fast template matching method in white-light scanning interferometry for 3D micro-profile measurement[J]. Applied optics, 2020, 59(4): 1082-1091.

[3] HU C, LIU X J, YANG W J, et al. Improved zero-order fringe positioning algorithms in white light interference based atomic force microscopy[J]. Optics & lasers in engineering, 2018, 100: 71-76.

[4] YANG W J, LIU X J, LU W L, et al. A novel white light interference based AFM head[J]. Journal of lightwave technology, 2017, 35(16): 3604-3610.

[5] GUISLAIN B G, HARVEY R, TOKARYK D W, et al. An alternative approach to interferogram collection and processing for a vintage Bomem DA3 Fourier transform spectrometer[J]. Journal of molecular spectroscopy, 2019, 364: 111181-111187.

[6] SHI Z H, YANG B X, HU X B, et al. Lens surface distance measurement with large range and high precision based on low coherence interferometry[J]. Acta optica sinica, 2016, 36(6): 06120011-06120018.

[7] LEI Z L, LIU X J, ZHAO L, et al. A rapid measurement method for structured surface in white light interferometry[J]. Journal of microscopy, 2019, 276(3): 118-127.

[8] WANG C L, LI Y S, LIU X B, et al. Detection and correction of linear phase error for Fourier transform spectrometer using phase correction method[J]. Advanced materials research, 2011, 225-226: 293-296.

[9] ZHOU Y F, CAI H Z, ZHONG L Y, et al. Eliminating the influence of source spectrum of white light scanning interferometry through time-delay estimation algorithm[J]. Optics communications, 2017, 391: 1-8.

[10] XIN L, LIU X, YANG Z M, et al. Three-dimensional reconstruction of super-resolved white-light interferograms based on deep learning[J]. Optics and lasers in engineering, 2021, 145(12): 106663.

[11] FENG X, GUO Q, HAN C P, et al. Correction method of zero path difference position[J]. Journal of infrared and millimeter wave, 2017, 36(006): 795-798.

[12] SHAO C Y, GU M J, QI C L, et al. Detection of zero path difference position for FY-3D hyper-spectral infrared atmospheric sounder[J]. Optics and precision engineering, 2020, 28(12): 2573-2580.

[13] WEI D, NAGATA Y, AKETAGAWA M. Phase information-assisted method to obtain the position of zero optical path difference for a pulse-train interferometer[J]. Optical engineering, 2018, 57(11): 114106.

[14] WEI D, YANG P, XIAO M Z. Frequency pair model for selection of signal spectral components to determine the position of zero optical-path difference in a pulse-train interferometer[J]. Optics communications, 2018, 434: 124-127.

[15] WEI D, XIAO M Z. Using the phase of second-harmonic interference fringes as a position marker for detecting the zero optical path difference in a nonlinear pulse-train interferometer[J]. Optical engineering, 2019, 58(3): 034106.1-034106.4.

[16] SERIZAWA T, SUZUKI T, CHOI S, et al. 3-D surface profile measurement using spectral interferometry based on continuous wavelet transform[J]. Optics communications, 2017, 396: 216-220.

[17] WANG Z Y, LIU Z G, DENG Z W, et al. Phase extraction of non-stationary interference signal in frequency scanning interferometry using complex shifted Morlet wavelets[J]. Optics communications, 2018, 420: 26-33.

[18] SHABANI Z, SABOURI S G, KHORSAND A. Combination of discrete wavelet transform and ANFIS for post processing of spectroscopic signals[J]. Optical & quantum electronics, 2018, 50(10): 359.

[19] DENG Q Y, HUANG Q Q, HOU J, et al. Analysis and restriction about accumulated phase error in spacial frequency-domain algorithm for white-light interferomety[J]. Laser & optoelectronics progress, 2021, 58(7): 0718001.1-0718001. 11.

[20] ZHOU Y F, ZHONG L Y, CAI H Z, et al. White light scanning interferometry based on generalized cross-correlation time delay estimation[J]. IEEE photonics journal, 2017, 9(5): 6900511.

QIN Yusheng, HAN Xin, LI Xiangxian, TONG Jingjing, LI Yan, and GAO Minguang. Research on determining the position of zero optical path difference with the wavelet transform[J]. 光电子快报(英文版), 2023, 19(3): 170.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!