激光与光电子学进展, 2015, 52 (2): 021801, 网络出版: 2015-01-20   

折射率不匹配引入的像差对共聚焦显微成像的影响 下载: 1080次

Effect of Aberration Induced by Refractive Index Mismatch on Imaging in Confocal Microscopy
肖昀 1,2,3,*张运海 1檀慧明 1
作者单位
1 中国科学院苏州生物医学工程技术研究所江苏省医用光学重点实验室, 江苏 苏州 215163
2 中国科学院大学, 北京 100049
3 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033
摘要
为了研究折射率不匹配引入的像差对共聚焦显微镜成像的影响,根据Richards 和Wolf 矢量衍射积分建立计算模型,分析共聚焦显微镜常用的两种情况中存在折射率不匹配时的点扩散函数(PSF),并通过实验进行验证。光束经过折射率不匹配的油-盖玻片-水聚焦时,探测深度从0.5 μm 增至10 μm ,其PSF 的z 轴半峰全宽(FWHM)从0.4391 μm 变为0.931 μm ,其光强最大值从1.161 降为0.4119。当探测深度为10 μm 时,折射率匹配的空气-空气-空气的PSF 的z 轴FWHM 为1.059 μm ,光强最大值为1;而折射率不匹配的空气-玻璃-水的PSF 的z 轴FWHM 为7.5 μm ,光强最大值为0.04632。当探测深度较大时,折射率不匹配引入的像差会导致光斑变大和不对称,能量分散,影响成像质量。
Abstract
According to Wolf and Richard′ s vectorial diffraction integral, a model is established, and the point spread function (PSF) in the two common conditions of confocal microscopy with a refractive index mismatch to study the effect of aberration induced by refractive index mismatch on imaging in confocal microscopy. The model is tested by experiment. When the beams focus into a spot through oil, coverslip and water, the full width at half maximum (FWHM) of the PSF along the z axis is broadened from 0.4391 μm to 0.931 μm with the detective depth from 0.5 μm to 10 μm . And the maximum intensity of the PSF is reduced from 1.161 to 0.4119. When the detective depth is 10 μm , the FWHM of the PSF with the refractive index match along the z axis is 1.059 μm , and its maximum intensity is 1. But the FWHM of the PSF with refractive index mismatch along the z axis is 7.5 μm , and its maximum intensity is 0.04632. When the detective depth is large, the aberration induced by refractive index mismatch can make light spot bigger, dispersive energy and influent the imaging quality.
参考文献

[1] T Wilson. Confocal Microscopy[M]. London: Academic Press, 1990, 426: 1-64.

[2] Y Zhang, B Hu, Y Dai, et al.. A new multichannel spectral imaging laser scanning confocal microscope[J]. Computational and Mathematical Methods in Medicine, 2013. 8.

[3] P Davidovi, M D Egger. Scanning laser microscope for biological investigations[J]. Appl Opt, 1971, 10(7): 1615-1619.

[4] M J Nasse, J C Woehl. Realistic modeling of the illumination point spread function in confocal scanning optical microscopy[J]. Journal of the Optical Society of America a-Optics Image Science and Vision, 2010, 27(2): 295-302.

[5] 肖昀, 张运海, 王真, 等. 入射激光对激光扫描共聚焦显微镜分辨率的影响[J]. 光学 精密工程, 2014, 22(1): 31-38.

    Xiao Yun, Zhang Yunhai, Wang Zhen, et al.. Effect of incident laser on resolution of LSCM[J]. Optics and Precision Engineering, 2014, 22(1): 31-38.

[6] S Hell, G Reiner, C Cremer, et al.. Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index[J]. Journal of Microscopy, 1993, 169(3): 391-405.

[7] H Jacobsen, P Hanninen, E Soini, et al.. Refractive-index-induced aberrations in two-photon confocal fluorescence microscopy[J]. Journal of Microscopy, 1994, 176(3): 226-230.

[8] M J Booth, T Wilson. Refractive-index-induced aberrations in single-photon and two-photon microscopy and the use of aberration correction[J]. Journal of Biomedical Optics, 2001, 6(3): 266-272.

[9] S F Gibson, F Lanni. Experimental test of an analytical model dimensional microscopy[J]. J Opt Soc Am A, 1991, 8(10): 1601-1613.

[10] A Diaspro, F Fedrici, M Robello. Influence of refractive-index mismatch in high-resolution three-dimensional concocal microscopy[J]. Appl Opt, 2002, 41(4): 685-690.

[11] P Torok, P Varga, G R Booker. Electromagnetic diffraction of light focused through a planar interface between materials of mismatched refractive indices: An integral represetation[J]. Journal of the Optical Society of America a-Optics Image Science and Vision, 1995, 12(2): 325-332.

[12] M M Corral. Point spread function engineering in confocal scanning microscopy[C]. SPIE, 2004. 112-122.

[13] B Richards, E Wolf. Electromagnetic diffraction in optical systems II. structure of the image field in an aplanatic system [J]. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1959, 253(1274): 358-379.

[14] E Wolf. Electromagnetic diffraction in optical systems I. An integral representation of the image field[J]. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences, 1959, 253(1274): 349-357.

[15] P Torok, P Varga. Electromagnetic diffraction of light focused through a stratified medium[J]. Appl Opt, 1997, 36(11): 2305-2312.

[16] P Torok, P D Higdon, T Wilson. On the general properties of polarised light conventional and confocal microscopes[J]. Opt Commun, 1998, 148(4-6): 300-315.

[17] H Jinnai, Y Nishikawa, T Koga, et al.. Direct observation of three-dimensional bicontinuous structure developed via spindale decomposition[J]. Macromolecules, 1995, 28(13): 4782-4784.

[18] S H Lin, Z M Chen, S J Liu, et al.. Three-dimensional observation of defects in nitrogen-doped 6H-SiC crystals using a laser scanning confocal microscope[J]. Journal of Materials Science, 2012, 47(7): 3429-3434.

[19] M Hovakimyan, R Guthoff, M Reichard, et al.. In vivo confocal laser-scanning microscopy to characterize wound repair in rabbit corneas after collagen cross-linking[J]. Clin Exp Ophthalmol, 2011, 39(9): 899-909.

[20] P E Chetverikov. Confocal laser scanning microscopy technique for the study of internal genitalia and external morphology of eriophyoid mites (Acari: Eriophyoidea)[J]. Zootaxa, 2012, 3453: 56-68.

肖昀, 张运海, 檀慧明. 折射率不匹配引入的像差对共聚焦显微成像的影响[J]. 激光与光电子学进展, 2015, 52(2): 021801. Xiao Yun, Zhang Yunhai, Tan Huiming. Effect of Aberration Induced by Refractive Index Mismatch on Imaging in Confocal Microscopy[J]. Laser & Optoelectronics Progress, 2015, 52(2): 021801.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!