激光与光电子学进展, 2016, 53 (10): 100601, 网络出版: 2016-10-12   

无线光通信系统中部分相干阵列光束的传输特性研究 下载: 536次

Propagation Properties of Partially Coherent Array Beams in Free Space Optics System
作者单位
西安理工大学自动化与信息工程学院, 陕西 西安 710048
摘要
根据广义Huygens-Fresnel原理和修正von Karman谱模型,推导得到无线光通信系统中相互独立的部分相干高斯谢尔模型(GSM)阵列光束在大气湍流中传输时的光强分布、均方根束宽和桶中功率解析式,并对不同因素影响下的自耦合特性、光束扩展和桶中功率进行了数值分析。结果表明,部分相干GSM阵列光束在大气传输过程中,当到达某一距离时多束光能合成一个平顶光束,再演变为高斯光束,且阵列光束在大气湍流中的自耦合特性比在自由空间中好;湍流外尺度对光强分布、光束扩展影响很小,可以忽略;部分相干GSM阵列光束与部分相干单GSM光束相比,具有更强的抑制湍流特性,有利于实现远距离通信。
Abstract
Based on the generalized Huygens-Fresnel principle and the modified von Karman spectrum model, the analytic expressions of the intensity distribution, the root mean square beam width and the power in the bucket of mutually-independent partially-coherent Gaussian-Shell model (GSM) array beams in the free space optics system are derived when the beams propagate in the atmospheric turbulence. The self-coupling characteristics, the power in the bucket and the beam spreading are analyzed numerically under the influence of different factors. The results show that when the partially coherent GSM array beams propagate for a certain distance in the atmospheric turbulence, they will be synthesized into a flat-topped beam which then evolves to a Gaussian beam. Moreover, the self-coupling characteristics of the array beams in atmospheric turbulence are better than those in free space. The influence of turbulent outer scale on the intensity distribution and beam spreading is very small, and can be ignored. Compared with the partially coherent single GSM beam, the partially coherent GSM array beams have stronger anti-turbulence properties, which is beneficial to realizing long-distance communications.
参考文献

[1] Ma Y X, Wang X L, Zhou P, et al.Coherent beam combination of 137 W fiber amplifier array using single frequency dithering technique[J]. Optics and Lasers in Engineering, 2011, 49(8): 1089-1092.

[2] Geng C, Zhao B Y, Zhang E T, et al. 1.5 kW incoherent beam combining of four fiber lasers using adaptive fiber-optics collimators[J]. IEEE Photonics Technology Letters, 2013, 25(13): 1286-1289.

[3] 汤明玥, 李宾中, 王宇峰, 等. 非Kolmogorov湍流对高斯谢尔光束的瑞利区间和湍流距离的影响[J]. 中国激光, 2014, 41(10): 1013002.

    Tang Mingyue, Li Binzhong, Wang Yufeng, et al. Influence of non-Kolmogorov turbulence on the Rayleigh range and turbulence distance of Gaussian-Schell beams[J]. Chinese J Lasers, 2014, 41(10): 1013002.

[4] 李红霞, 钮洁青, 陈敬蓉, 等. 指印光学显现系统液芯光纤光束传输特性研究[J]. 激光与光电子学进展, 2014, 51(1): 010603.

    Li Hongxia, Niu Jieqing, Chen Jingrong, et al. Study on beam transmission characteristics in liquid core fiber of fingerprints optical detection system[J]. Laser & Optoelectronics Progress, 2014, 51(1): 010603.

[5] 陈鸿, 季小玲. 环状光束沿斜程路径大气湍流传输的光束扩展[J]. 中国激光, 2015, 42(11): 1113003.

    Chen Hong, Ji Xiaoling. Spreading of annular beams propagating through atmospheric turbulence along a slanted path[J]. Chinese J Lasers, 2015, 42(11): 1113003.

[6] 万晶, 熊晗, 张翔, 等. 基于四柱透镜结构的线聚焦型空间滤波器光束传输特性研究[J]. 光学学报, 2015, 35(9): 0907001.

    Wan Jing, Xiong Han, Zhang Xiang, et al. Beam propagation characteristics in four-cylindrical-lens slit spatial filter[J]. Acta Optica Sinica, 2015, 35(9): 0907001.

[7] 季小玲, 李晓庆. 湍流对离轴列阵高斯光束相干与非相干合成的影响[J]. 物理学报, 2008, 57(12): 7674-7679.

    Ji Xiaoling, Li Xiaoqing. Influence of turbulence on the coherent and incoherent combinations of off-axis Gaussian beams[J]. Acta Physica Sinica, 2008, 57(12): 7674-7679.

[8] 陆璐, 季小玲, 邓金平, 等. 非Kolmogorov大气湍流对高斯列阵光束扩展的影响[J]. 物理学报, 2014, 63(1): 014207.

    Lu Lu, Ji Xiaoling, Deng Jinping, et al. Influence of non-Kolmogorov turbulence on the spreading of Gaussian array beams[J]. Acta Physica Sinica, 2014, 63(1): 014207.

[9] Zhou P, Ma Y X, Wang X L, et al. Average spreading of a Gaussian beam array in non-Kolmogorov turbulence[J]. Optics Letters, 2010, 35(7): 1043-1045.

[10] Wu J. Propagation of a Gaussian-Schell beam through turbulent media[J]. Journal of Modern Optics, 1990, 37(4): 671-684.

[11] Pan P P, Zhang B, Qiao N, et al. Characteristics of scintillations and bit error rate of partially coherent rectangular array beams in turbulence[J]. Optics Communications, 2011, 284(4): 1019-1025.

[12] Ji X L, Shao X L. Influence of turbulence on the beam propagation factor of Gaussian Schell-model array beams[J]. Optics Communications, 2010, 283(6): 869-873.

[13] Ai Y L, Dan Y Q. Range of turbulence-negligible propagation of Gaussian Schell-model array beams[J]. Optics Communications, 2011, 284(13): 3216-3220.

[14] 卢芳, 韩香娥. 高斯谢尔模型阵列光束在湍流大气中的空间相干性[J]. 红外与激光工程, 2015, 44(1): 305-309.

    Lu Fang, Han Xiang′e. Spatial coherence properties of GSM array beams in turbulent atmosphere[J]. Infrared and Laser Engineering, 2015, 44(1): 305-309.

[15] Yuan Y S, Liu X S, Wang F, et al. Scintillation index of a multi-Gaussian Schell-model beam in turbulent atmosphere[J]. Optics Communications, 2013, 305: 57-65.

[16] Yuan Y S, Cai Y J, Eyyubolu H T, et al. Propagation factor of partially coherent flat-topped beam array in free space and turbulent atmosphere[J]. Optics and Lasers in Engineering, 2012, 50(5): 752-759.

[17] Oztan M A, Baykal Y. Scintillations of partially coherent annular and flat-topped array beams in extremely strong turbulent medium[J]. Optics Communications, 2015, 354: 419-427.

[18] Yang A L, Zhang E T, Ji X L, et al. Angular spread of partially coherent Hermite-cosh-Gaussian beams propagating through atmospheric turbulence[J]. Optics Express, 2008, 16(12): 8366-8380.

[19] Baykal Y, Eyyubolu H T, Cai Y J. Scintillations of partially coherent multiple Gaussian beams in turbulence[J]. Applied Optics, 2009, 48(10): 1943-1954.

[20] Zhou P, Ma Y X, Wang X L, et al. Average intensity of a partially coherent rectangular flat-topped laser array propagating in a turbulent atmosphere[J]. Applied Optics, 2009, 48(28): 5251-5258.

[21] Liu D J, Wang Y C, Yin H M. Propagation properties of partially coherent four-petal Gaussian vortex beams in turbulent atmosphere[J]. Optics & Laser Technology, 2016, 78: 95-100.

[22] 刘飞, 季小玲. 部分相干双曲余弦高斯阵列光束的湍流距离[J]. 中国激光, 2011, 38(7): 0713001.

    Liu Fei, Ji Xiaoling. Turbulence distance of partially coherent cosh-Gaussian array beams[J]. Chinese J Lasers, 2011, 38(7): 0713001.

[23] Wang H Y, Li X Y. Propagation properties of radial partially coherent flat-topped array beams in a turbulent atmosphere[J]. Optics Communications, 2010, 283(21): 4178-4189.

[24] 李成强, 张合勇, 王挺峰, 等. 高斯谢尔模光束在大气湍流中传输的相干特性的研究[J]. 物理学报, 2013, 62(22): 224203.

    Li Chengqiang, Zhang Heyong, Wang Tingfeng, et al. Investigation on coherence characteristics of Gauss-Schell model beam propagating in atmospheric turbulence[J]. Acta Physica Sinica, 2013, 62(22): 224203.

[25] 柯熙政, 王婉婷. 部分相干光在斜程和水平大气湍流中的光强与扩展[J]. 应用科学学报, 2015, 33(2): 142-154.

    Ke Xizheng, Wang Wanting. Intensity and expansion of partially coherent beam propagating in slant and horizontal atmospheric turbulence[J]. Journal of Applied Sciences, 2015, 33(2): 142-154.

[26] Cai Y J, Lin Q. Partially coherent flat-topped multi-Gaussian-Schell-model beam and its propagation[J]. Optics Communications, 2004, 239(1): 33-41.

[27] Andrews L C, Phillips R L. Laser beam propagation through random media[M]. Bellingham: SPIE Optical Engineering Press, 2005: 195.

[28] Shirai T, Dogariu A, Wolf E. Mode analysis of spreading of partially coherent beams propagating through atmospheric turbulence[J]. Journal of the Optical Society of America A, 2003, 20(6): 1094-1102.

[29] Kashani F D, Hedayati-Rad M R, Mahzoun M R, et al. Beam propagation analysis of a multi beam FSO system with partially flat-topped laser beams in turbulent atmosphere[J]. Optik, 2012, 123(10): 879-886.

[30] 向宁静, 王明军, 王太荣. 部分相干高斯谢尔光束在大气湍流中的平均强度与展宽[J]. 激光杂志, 2012, 33(5): 4-6.

    Xiang Ningjing, Wang Mingjun , Wang Tairong. Average intensity and spreading of a partially coherent Gaussian Schell-model beam propagation through atmospheric turbulence[J]. Laser Journal, 2012, 33(5): 4-6.

[31] Yan H X, Li S S, Zhang D L, et al. Numerical simulation of an adaptive optics system with laser propagation in the atmosphere[J]. Applied Optics, 2000, 39(18): 3023-3031.

柯熙政, 张雅. 无线光通信系统中部分相干阵列光束的传输特性研究[J]. 激光与光电子学进展, 2016, 53(10): 100601. Ke Xizheng, Zhang Ya. Propagation Properties of Partially Coherent Array Beams in Free Space Optics System[J]. Laser & Optoelectronics Progress, 2016, 53(10): 100601.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!