中国激光, 2016, 43 (3): 0303009, 网络出版: 2016-03-04   

镁/钛激光熔钎焊界面微观结构与元素热力学行为分析

Microstructure and Thermodynamic Behavior of Laser Welded-Brazed Mg/Ti Dissimilar Joint
作者单位
1 哈尔滨工业大学(威海)山东省特种焊接技术重点实验室, 山东 威海 264209
2 哈尔滨工业大学先进焊接与连接国家重点实验室, 黑龙江 哈尔滨 150001
摘要
镁/钛(Mg/Ti)异种金属既不反应也不互溶的特性制约着两者之间的冶金结合和可靠连接。为解决这一问题并拓宽Mg、Ti的应用,采用富铝镁基焊丝对Mg/Ti实施激光填丝搭接焊,实现了Mg/Ti之间的连接。在此基础上,利用扫描电镜对界面进行观察分析,并利用Miedema二元热力学模型和Toop三元热力学模型对调控元素Al在界面处的扩散及连接机理进行研究。结果表明,在焊丝中调控元素Al的参与下,Mg/Ti界面处形成超薄的反应层,元素线扫描结果显示Al在靠近Ti一侧界面处富集,实现了界面的冶金结合。热力学计算结果显示,在界面处Al-Ti化合物具有更大的析出驱动力,而且Al在富Ti一侧的化学势较低,且Al的界面偏聚导致Al的化学势进一步下降,表明Al的扩散方式为上坡扩散。
Abstract
The main obstacles of metallurgical bonding and reliable joining of Mg/Ti dissimilar joint are their nonreactive and immiscible characteristics. To overcome those problems and expand their application, laser lap joining of Mg/Ti with Al-rich Mg based wire is carried out. Mg/Ti interface is observed with scanning electron microscope, and the role of Al element in interfacial diffusion and bonding mechanism is investigated based on the result of calculation of Miedema binary and Toop ternary thermodynamic model. The results demonstrate that an ultra-thin reaction layer is observed at the Mg/Ti interface with the help of Al elements from filler. The element line scan results show that enrichment of Al element is evidenced at the interface, indicating metallurgical bonding of Mg and Ti. Thermodynamic calculation result reveals Al- Ti intermetallic compound has more driving force than other compounds, which indicates that it is the compound firstly precipitated from the liquid. In addition, Al chemical potential near the Ti side is lower than that at other places. Al segregation at the interface further causes the decrease of Al chemical potential, indicating the behavior of Al element from Mg fusion zone to the interface is uphill diffusion.
参考文献

[1] 丁文兵, 童彦刚, 邓德安, 等. AZ91D 变形镁合金激光焊接头的微观组织与机械性能[J]. 中国激光, 2014, 41(2): 0203003.

    Ding Wenbing, Tong Yangang, Deng Dean, et al.. Microstructure and mechanical properties of laser welded AZ91D wrought magnesium alloy[J]. Chinese J Lasers, 2014, 41(2): 0203003.

[2] 檀财旺, 李俐群, 陈彦宾, 等. AZ31B镁合金的光纤激光与CO2激光焊接特性[J]. 中国激光, 2011, 38(6): 0603015.

    Tan Caiwang, Li Liqun, Chen Yanbin, et al.. Characteristics of fiber laser and CO2 laser welding of AZ31B magnesium alloys[J]. Chinese J Lasers, 2011, 38(6): 0603015.

[3] 杨根妹, 张凌峰, 何换菊, 等. 退火处理对激光冲击AZ31镁合金力学性能的影响[J]. 中国激光, 2015, 42(2): 0206002.

    Zhang Genmei, Zhang Lingfeng, He Huanju, et al.. Effect of annealing on mechanical properties of AZ31 magnesium after laser shock processing[J]. Chinese J Lasers, 2015, 42(2): 0206002.

[4] 邵娟. 钛合金及其应用研究进展[J]. 稀有金属与硬质合金, 2007, 35(4): 61-65.

    Shao Juan. Application and development of titanium alloys[J]. Rare Metals and Cemented Carbides, 2007, 35(4): 61-65.

[5] 王华明, 张述泉, 王向明, 等. 大型钛合金结构件激光直接制造的进展与挑战(邀请论文)[J]. 中国激光, 2009, 36(12): 3204-3209.

    Wang Huaming, Zhang Shuquan, Wang Xiangming, et al.. Progress and challenges of laser direct manufacturing of large titanium structural components (invited paper)[J]. Chinese J Lasers, 2009, 36(12): 3204-3209.

[6] 熊江涛, 张赋升, 李京龙, 等. 镁合金与钛合金的瞬间液相扩散焊[J]. 稀有金属材料与工程, 2006, 35(10): 1677-1680.

    Xiong Jiangtao, Zhang Fusheng, Li Jinglong, et al.. Transient liquid phase bonding of magnesium alloy (AZ31b) and titanium alloy (Ti6Al4V) using aluminium interlayer[J]. Rare Metal Materials & Engineering, 2006, 35(10): 1677-1680.

[7] Masayuki A, Kazuhiro N. Effect of calcium on intermetallic compound layer at interface of calcium added magnesium-aluminum alloy and titanium joint by friction stir welding[J]. Materials science and engineering: B, 2010, 173(1): 135-138.

[8] 檀财旺, 巩向涛, 李俐群, 等. 镁/钛异种金属预置Al夹层光纤激光熔钎焊接特性[J]. 中国激光, 2015, 42(1): 0103002.

    Tan Caiwang, Gong Xiangtao, Li Liqun, et al.. Laser welding-brazing characteristics of dissimilar metals Mg/Ti with Al interlayers[J]. Chinese J Lasers, 2015, 42(1): 0103002.

[9] Gao M, Wang Z M, Li X Y, et al.. Laser keyhole welding of dissimilar Ti-6Al-4V titanium alloy to AZ31B magnesium alloy[J]. Metallurgical and Materials Transactions A, 2012, 43(1): 163-172.

[10] 孙顺平, 易丹青, 臧冰. 基于Miedema模型和Toop模型的Al-Si-Er合金热力学参数计算[J]. 稀有金属材料与工程, 2010, 39(11): 1975-1978.

    Sun Shunping, Yi Danqing, Zang Bing. Calculation of thermodynamic parameters of Al-Si-Er alloy based on Miedema model and toop model[J]. Rare Metal Materials and Engineering, 2010, 39(11):1975-1978.

[11] De Boer F R, Boom R, Mattens W C M, et al.. Cohesion in Metals: Transition Metal Alloys[M]. Amsterdam: North-Holland, 1988.

[12] Tanaka T, Gokcen N A, Morita Z I. Relationship between partial enthalpy of mixing and partial excess entropy of solute elements in infinitely dilute solutions of liquid binary alloys[J]. Zeitschrift Für Metallkunde, 1990, 81(5): 349-353.

[13] 范鹏, 周国治. 由组元的物性参数预测金属熔体的热力学性质[J]. 金属学报, 1999, 35(4): 421-426.

    Fan Peng, Zhou Guozhi. A model for predicting thermodynamic properties of metallic solutions from fundamental physical quantities of constituent elements[J]. Acta Metallrugica Sinica, 1999, 35(4): 421-426.

[14] Toop G W. Predicting ternary activities using binary data[J]. Trans Metall Soc, AIME, 1965, 233(5): 850-854.

[15] 丁学勇, 范鹏, 韩其勇. 三元系金属熔体中的活度和活度相互作用系数模型[J]. 金属学报, 1994, 30(14): 49-60.

    Ding Xueyong, Fan Peng, Han Qiyong. Models of activity and activity interaction parameter in ternary metallic melt[J]. Acta Metallrugica Sinica, 1994, 30(14): 49-60.

檀财旺, 黄煜华, 陈波, 李俐群, 冯吉才. 镁/钛激光熔钎焊界面微观结构与元素热力学行为分析[J]. 中国激光, 2016, 43(3): 0303009. Tan Caiwang, Huang Yuhua, Chen Bo, Li Liqun, Feng Jicai. Microstructure and Thermodynamic Behavior of Laser Welded-Brazed Mg/Ti Dissimilar Joint[J]. Chinese Journal of Lasers, 2016, 43(3): 0303009.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!