激光与光电子学进展, 2018, 55 (12): 120003, 网络出版: 2019-08-01   

全保偏光纤光学频率梳技术 下载: 1705次

All Polarization-Maintaining Fiber-Based Frequency Combs
作者单位
1 上海理工大学光电信息与计算机工程学院, 上海 200093
2 华东师范大学精密光谱科学与技术国家重点实验室, 上海 200062
引用该论文

刘婷婷, 郝强, 曾和平. 全保偏光纤光学频率梳技术[J]. 激光与光电子学进展, 2018, 55(12): 120003.

Tingting Liu, Qiang Hao, Heping Zeng. All Polarization-Maintaining Fiber-Based Frequency Combs[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120003.

参考文献

[1] Eckstein J N, Ferguson A I, Hänsch T W. High-resolution two-photon spectroscopy with picosecond light pulses[J]. Physical Review Letters, 1978, 40(13): 847-850.

[2] Jones D J, Dissams S A, Ranka J K, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 2000, 288(5466): 635-639.

[3] 魏志义. 2005年诺贝尔物理学奖与光学频率梳[J]. 物理, 2006, 35(3): 213-217.

    Wei Z Y. The 2005 Nobel prize in physics and optical frequency comb techniques[J]. Physics., 2006, 35(3): 213-217.

[4] Kienberger R, Hentschel M, Uiberacker M, et al. Steering attosecond electron wave packets with light[J]. Science, 2002, 297(5584): 1144-1148.

[5] Minoshima K, Matsumoto H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser[J]. Applied Optics, 2000, 39(30): 5512-5517.

[6] Bloom B J, Nicholson T L, Williams J R, et al. An optical lattice clock with accuracy and stability at the 10 -18 level [J]. Nature, 2014, 506(7486): 71-75.

[7] Wu H Z, Zhang F M, Meng F, et al. Absolute distance measurement using frequency comb and a single-frequency laser[J]. IEEE Photonics Technology Letters, 2015, 27(24): 2587-2590.

[8] Jung K, Shin J, Kim J. Ultralow phase noise microwave generation from mode-locked Er-fiber lasers with subfemtosecond integrated timing jitter[J]. IEEE Photonics Journal, 2013, 5(3): 5500906.

[9] Braje D A, Kirchner M S, Osterman S, et al. Astronomical spectrograph calibration with broad-spectrum frequency combs[J]. The European Physical Journal D, 2008, 48(1): 57-66.

[10] Giorgetta F R, Swann W C, Sinclair L C, et al. Optical two-way time and frequency transfer over free space[J]. Nature Photonics, 2013, 7: 434-438.

[11] Diddams S A. The evolving optical frequency comb[J]. Journal of the Optical Society of America B, 2010, 27(11): B51-B62.

[12] Washburn B R, Diddams S A, Newbury N R, et al. Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared[J]. Optics Letters, 2004, 29(3): 250-252.

[13] Yang K W, Li W X, Yan M, et al. High-power ultra-broadband frequency comb from ultraviolet to infrared by high-power fiber amplifiers[J]. Optics Express, 2012, 20(12): 12899-12905.

[14] Creeden D, Johnson B R, Setzler S D, et al. Resonantly pumped Tm-doped fiber laser with >90% slope efficiency[J]. Optics Letters, 2014, 39(3): 470-473.

[15] Geng J H, Wang Q, Luo T, et al. Single-frequency gain-switched Ho-doped fiber laser[J]. Optics Letters, 2012, 37(18): 3795-3797.

[16] Leconte B, Cadier B, Gilles H, et al. Extended tunability of Nd-doped fiber lasers operating at 872-936 nm[J]. Optics Letters, 2015, 40(17): 4098-4101.

[17] Ruehl A, Marcinkevicius A, Fermann M E, et al. 80 W, 120 fs Yb-fiber frequency comb[J]. Optics Letters, 2010, 35(18): 3015-3017.

[18] Sinclair L C, Deschênes J D, Sonderhouse L, et al. Invited Article: A compact optically coherent fiber frequency comb[J]. The Review of Scientific Instruments, 2015, 86(8): 081301.

[19] Shen D Y, Sahu J K, Clarkson W A. High-power widely tunable Tm: fibre lasers pumped by an Er, Yb co-doped fibre laser at 1.6 μm[J]. Optics Express, 2006, 14(13): 6084-6090.

[20] Liu X M, Lagsgaard J, Turchinovich D. Monolithic highly stable Yb-doped femtosecond fiber lasers for applications in practical biophotonics[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(4): 1439-1450.

[21] Zhang L, Zhou J Q, Wang Z K, et al. SESAM mode-locked, environmentally stable, and compact dissipative soliton fiber laser[J]. IEEE Photonics Technology Letters, 2014, 26(13): 1314-1316.

[22] Zou F, Wang Z K, Wang Z W, et al. Widely tunable all-fiber SESAM mode-locked Ytterbium laser with a linear cavity[J]. Optics & Laser Technology, 2017, 92: 133-137.

[23] Szczepanek J. Karda s' T M, Michalska M, et al. Simple all-PM-fiber laser mode-locked with a nonlinear loop mirror [J]. Optics Letters, 2015, 40(15): 3500-3503.

[24] 罗浆, 杨松, 郝强, 等. SESAM锁模全保偏光纤激光器重复频率的精确锁定[J]. 光学学报, 2017, 37(2): 0206003.

    Luo J, Yang S, Hao Q, et al. Precise locking the repetition rate of a SESAM mode-locking all polarization maintaining fiber laser[J]. Acta Optica Sinica, 2017, 37(2): 0206003.

[25] Jiang T X, Cui Y F, Lu P, et al. All PM fiber laser mode locked with a compact phase biased amplifier loop mirror[J]. IEEE Photonics Technology Letters, 2016, 28(16): 1786-1789.

[26] Hänsel W, Hoogland H, Giunta M, et al. All polarization-maintaining fiber laser architecture for robust femtosecond pulse generation[J]. Applied Physics B, 2017, 123: 41.

[27] 刘关玉, 欧尚明, 陈昆仑, 等. 基于偏置相移非线性环路反射镜的锁模振荡放大飞秒脉冲激光器[J]. 中国激光, 2017, 44(5): 0501011.

    Liu G Y, Ou S M, Chen K L, et al. Mode-locked oscillator-amplifier femtosecond pulse laser with bias phase shift nonlinear loop mirror[J]. Chinese Journal of Lasers, 2017, 44(5): 0501011.

[28] Chen F H, Hao Q, Zeng H P. Optimization of an NALM mode-locked all-PM Er: fiber laser system[J]. IEEE Photonics Technology Letters, 2017, 29(23): 2119-2122.

[29] Wang Y Z, Zhang L Q, Zhuo Z, et al. Cross-splicing method for compensating fiber birefringence in polarization-maintaining fiber ring laser mode locked by nonlinear polarization evolution[J]. Applied Optics, 2016, 55(21): 5766-5770.

[30] Szczepanek J. Karda s' T M, Radzewicz C, et al. Ultrafast laser mode-locked using nonlinear polarization evolution in polarization maintaining fibers [J]. Optics Letters, 2017, 42(3): 575-578.

[31] Sinclair L C, Coddington I, Swann W C, et al. Operation of an optically coherent frequency comb outside the metrology lab[J]. Optics Express, 2014, 22(6): 6996-7006.

[32] Lee J, Lee K, Jang Y S, et al. Testing of a femtosecond pulse laser in outer space[J]. Scientific Reports, 2014, 4: 5134.

[33] Lezius M, Wilken T, Deutsch C, et al. Space-borne frequency comb metrology[J]. Optica, 2016, 3(12): 1381-1387.

[34] Kuse N, Jiang J, Lee C C, et al. All polarization-maintaining Er fiber-based optical frequency combs with nonlinear amplifying loop mirror[J]. Optics Express, 2016, 24(3): 3095-3102.

[35] Li Y H, Kuse N Y, Rolland A, et al. Low noise, self-referenced all polarization maintaining ytterbium fiber laser frequency comb[J]. Optics Express, 2017, 25(15): 18017-18023.

[36] 魏志义. 超快光学研究前沿[M]. 上海: 上海交通大学出版社, 2014.

    Wei ZY. Advances in ultrafast optics[M]. Shanghai: Shanghai Jiao Tong University Press. 2014.

[37] Baumgartl M, Ortaç B, Limpert J, et al. Impact of dispersion on pulse dynamics in chirped-pulse fiber lasers[J]. Applied Physics B, 2012, 107(2): 263-274.

[38] 黎遥. 超短脉冲激光精密时-频域控制[D]. 上海: 华东师范大学, 2010.

    LiY. Precise control of ultrashort pulse laser in the time and frequency domains[D]. Shanghai: East China Normal University, 2010.

[39] Agrawal GP. Nonlinear fiber optics[M]. New York: Academic Press, 1995: 195- 211.

[40] Keller U, Weingarten K J, Kärtner F X, et al. Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(3): 435-453.

[41] Schibli T R, Hartl I, Yost D C, et al. Optical frequency comb with submillihertz linewidth and more than 10 W average power[J]. Nature Photonics, 2008, 2(6): 355-359.

[42] Feng Y, Xu X, Hu X H, et al. Environmental-adaptability analysis of an all polarization- maintaining fiber-based optical frequency comb[J]. Optics Express, 2015, 23(13): 17549-17559.

[43] TogashiH, NagaikeT, JinL, et al. All polarization maintaining optical frequency comb based on Er-doped fiber laser with carbon nanotube[C]∥Conference on Lasers and Electro-Optics: Science and Innovations 2017, May 14-19, 2017, San Jose, California United States. Washington: Optical Society of America, 2017: JW2A. 60.

[44] Kim J, Song Y J. Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications[J]. Advances in Optics and Photonics, 2016, 8(3): 465-540.

[45] Tamura K, Haus H A, Ippen E P. Self-starting additive pulse mode-locked erbium fibre ring laser[J]. Electronics Letters, 1992, 28(24): 2226-2228.

[46] Matsas V J, Newson T P, Richardson D J, et al. Selfstarting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation[J]. Electronics Letters, 1992, 28(15): 1391-1393.

[47] Hofer M, Fermann M E, Haberl F, et al. Mode locking with cross-phase and self-phase modulation[J]. Optics Letters, 1991, 16(7): 502-504.

[48] Fermann M E, Stock M L, Andrejco M J, et al. Passive mode locking by using nonlinear polarization evolution in a polarization-maintaining erbium-doped fiber[J]. Optics Letters, 1993, 18(11): 894-896.

[49] Jones D J, Haus H A, Ippen E P. Subpicosecond solitons in an actively mode-locked fiber laser[J]. Optics Letters, 1996, 21(22): 1818-1820.

[50] Nielsen C K, Keiding S R. All-fiber mode-locked fiber laser[J]. Optics Letters, 2007, 32(11): 1474-1476.

[51] BoivinetS, Lecourt JB, CsertegA, et al. 3.3 MHz repetition rate all-fiber laser oscillator mode-locked by polarization rotation in PM fiber[C]∥2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference, May 12-16, 2013, Munich, Germany. New York: IEEE, 2013: 14252544.

[52] Shen X L, Li W X, Zeng H P. Polarized dissipative solitons in all-polarization-maintained fiber laser with long-term stable self-started mode-locking[J]. Applied Physics Letters, 2014, 105(10): 101109.

[53] Boivinet S, Lecourt J B, Hernandez Y, et al. All-fiber 1-m PM mode-lock laser delivering picosecond pulses at sub-MHz repetition rate[J]. IEEE Photonics Technology Letters, 2014, 26(22): 2256-2259.

[54] Rauschenberger J, Fortier T M, Jones D J, et al. Control of the frequency comb from a mode-locked erbium-doped fiber laser: Errata[J]. Optics Express, 2003, 11(11): 1345.

[55] Schibli T R, Minoshima K, Hong F L, et al. Frequency metrology with a turnkey all-fiber system[J]. Optics Letters, 2004, 29(21): 2467-2469.

[56] Inaba H, Daimon Y, Hong F L, et al. Long-term measurement of optical frequencies using a simple, robust and low-noise fiber based frequency comb[J]. Optics Express, 2006, 14(12): 5223-5231.

[57] Peng J L, Ahn H, Shu R H, et al. Highly stable, frequency-controlled mode-locked erbium fiber laser comb[J]. Applied Physics B, 2007, 86(1): 49-53.

[58] Nakajima Y, Inaba H, Hosaka K, et al. A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator[J]. Optics Express, 2010, 18(2): 1667-1676.

[59] 吴浩煜, 时雷, 马挺, 等. 基于飞秒光纤激光器的光频率梳设计与研制技术[J]. 中国激光, 2017, 44(6): 0601008.

    Wu H Y, Shi L, Ma T, et al. Design and development technique for optical frequency comb based on femtosecond fiber lasers[J]. Chinese Journal of Lasers, 2017, 44(6): 0601008.

[60] Fermann M E, Haberl F, Hofer M, et al. Nonlinear amplifying loop mirror[J]. Optics Letters, 1990, 15(13): 752-754.

[61] Duling I N. All-fiber ring soliton laser mode locked with a nonlinear mirror[J]. Optics Letters, 1991, 16(8): 539-541.

[62] Aguergaray C. Broderick N G R, Erkintalo M, et al. Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror[J]. Optics Express, 2012, 20(10): 10545-10551.

[63] Hao Q, Chen F H, Yang K W, et al. Self-started mode-locking with dispersion-imbalanced nonlinear amplifier loop[J]. IEEE Photonics Technology Letters, 2016, 28(1): 87-90.

[64] Guo Z R, Hao Q, Yang S, et al. Octave-spanning supercontinuum generation from an NALM mode-locked Yb-fiber laser system[J]. IEEE Photonics Journal, 2017, 9(1): 1600507.

[65] Jason Jones R, Diels J C, Jasapara J, et al. Stabilization of the frequency, phase, and repetition rate of an ultra-short pulse train to a Fabry-Perot reference cavity[J]. Optics Communications, 2000, 175(4/5/6): 409-418.

[66] Droste S, Ycas G, Washburn B R, et al. Optical frequency comb generation based on erbium fiber lasers[J]. Nanophotonics, 2016, 5(2): 196-213.

[67] 沈旭玲. 光纤超短脉冲激光器稳定控制研究[D]. 上海: 华东师范大学, 2015.

    Shen XL. Stability of ultra-fast pulses from fiber lasers[D]. Shanghai: East China Normal University, 2015.

[68] Baumann E, Giorgetta F R, Nicholson J W, et al. High-performance, vibration-immune, fiber-laser frequency comb[J]. Optics Letters, 2009, 34(5): 638-640.

[69] Zhang W, Lours M, Fischer M, et al. Characterizing a fiber-based frequency comb with electro-optic modulator[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2012, 59(3): 432-438.

[70] Hudson D D, Holman K W, Jones R J, et al. Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator[J]. Optics Letters, 2005, 30(21): 2948-2950.

[71] le CoqY, ZhangW, SantarelliG, et al. Investigation of an optical frequency comb with intracavity EOM and optimization of microwave generation[C]∥2012 European Frequency and Time Forum, April 23-27, 2012, Gothenburg, Sweden. New York: IEEE, 2012: 238- 241.

[72] Rieger S, Hellwig T, Walbaum T, et al. Optical repetition rate stabilization of a mode-locked all-fiber laser[J]. Optics Express, 2013, 21(4): 4889-4895.

[73] Yang K W, Hao Q, Zeng H P. All-optical high-precision repetition rate locking of an Yb-doped fiber laser[J]. IEEE Photonics Technology Letters, 2015, 27(8): 852-855.

[74] Hao Q, Zhang Q S, Chen F H, et al. All-optical 20-μHz-level repetition rate stabilization of mode locking with a nonlinear amplifying loop mirror[J]. Journal of Lightwave Technology, 2016, 34(11): 2833-2837.

[75] Fisher R A, Bischel W K. Pulse compression for more efficient operation of solid-state laser amplifier chains[J]. Applied Physics Letters, 1974, 24(10): 468-470.

[76] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 55(6): 447-449.

[77] Anderson D, Desaix M, Karlsson M, et al. Wave-breaking-free pulses in nonlinear-optical fibers[J]. Journal of the Optical Society of America B, 1993, 10(7): 1185-1190.

[78] 刘雪明, 毛东, 王擂然. 耗散孤子光纤激光器的研究进展和应用[J]. 科学通报, 2012, 57(32): 3039-3054.

    Liu X M, Mao D, Wang L R. Recent progress in investigation and application of dissipative soliton in fiber lasers[J]. Chinese Science Bulletin, 2012, 57(32): 3039-3054.

[79] Papadopoulos D N, Zaouter Y, Hanna M, et al. Generation of 63 fs 4.1 MW peak power pulses from a parabolic fiber amplifier operated beyond the gain bandwidth limit[J]. Optics Letters, 2007, 32(17): 2520-2522.

[80] Lim J, Knabe K, Tillman K A, et al. A phase-stabilized carbon nanotube fiber laser frequency comb[J]. Optics Express, 2009, 17(16): 14115.

[81] Lim J, Chen H W, Chang G Q, et al. Frequency comb based on a narrowband Yb-fiber oscillator: pre-chirp management for self-referenced carrier envelope offset frequency stabilization[J]. Optics Express, 2013, 21(4): 4531-4538.

[82] Liu Y, Li W X, Luo D P, et al. Generation of 33 fs 93.5 W average power pulses from a third-order dispersion managed self-similar fiber amplifier[J]. Optics Express, 2016, 24(10): 10939-10945.

[83] Zhou S A, Wise F W, Ouzounov D G. Divided-pulse amplification of ultrashort pulses[J]. Optics Letters, 2007, 32(7): 871.

[84] Kong L J, Zhao L M, Lefrancois S, et al. Generation of megawatt peak power picosecond pulses from a divided-pulse fiber amplifier[J]. Optics Letters, 2012, 37(2): 253-255.

[85] Lesparre F, Gomes J T, Délen X, et al. Yb∶YAG single-crystal fiber amplifiers for picosecond lasers using the divided pulse amplification technique[J]. Optics Letters, 2016, 41(7): 1628-1631.

[86] Klenke A, Kienel M, Eidam T, et al. Divided-pulse nonlinear compression[J]. Optics Letters, 2013, 38(22): 4593-4596.

[87] Guichard F, Hanna M, Lombard L, et al. Two-channel pulse synthesis to overcome gain narrowing in femtosecond fiber amplifiers[J]. Optics Letters, 2013, 38(24): 5430-5433.

[88] Guichard F, Hanna M, Zaouter Y, et al. Analysis of limitations in divided-pulse nonlinear compression and amplification[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 619-623.

[89] 杨康文, 郝强, 曾和平. 超短脉冲偏振分割放大技术研究进展(特邀)[J]. 红外与激光工程, 2018, 47(1): 56-64.

    Yang K W, Hao Q, Zeng H P. Advances in ultrashort divided-pulse amplification systems (Invited)[J]. Infrared and Laser Engineering, 2018, 47(1): 56-64.

[90] Hao Q, Zhang Q S, Sun T T, et al. Divided-pulse nonlinear amplification and simultaneous compression[J]. Applied Physics Letters, 2015, 106(10): 101103.

[91] Hao Q, Wang Y F, Liu T T, et al. Divided-pulse nonlinear amplification at 1.5 μm[J]. IEEE Photonics Journal, 2016, 8(5): 7101908.

[92] Takayanagi J, Nishizawa N, Nagai H, et al. Generation of high-power femtosecond pulse and octave-spanning ultrabroad supercontinuum using all-fiber system[J]. IEEE Photonics Technology Letters, 2005, 17(1): 37-39.

[93] Chen Y W, Räikkönen E, Kaasalainen S, et al. Two-channel hyperspectral LiDAR with a supercontinuum laser source[J]. Sensors, 2010, 10(7): 7057-7066.

[94] Rulkov A B, Vyatkin M Y, Popov S V, et al. High brightness picosecond all-fiber generation in 525-1800 nm range with picosecond Yb pumping[J]. Optics Express, 2005, 13(2): 377-381.

[95] Kaminski C F, Watt R S, Elder A D, et al. Supercontinuum radiation for applications in chemical sensing and microscopy[J]. Applied Physics B, 2008, 92(3): 367-378.

[96] Boyraz O, Kim J, Islam M N, et al. 10 Gb/s multiple wavelength, coherent short pulse source based on spectral carving of supercontinuum generated in fibers[J]. Journal of Lightwave Technology, 2000, 18(12): 2167-2175.

[97] Corwin K L, Newbury N R, Dudley J M, et al. Fundamental noise limitations to supercontinuum generation in microstructure fiber[J]. Physical Review Letters, 2003, 90(11): 113904.

[98] Newbury N R, Washburn B R, Corwin K L, et al. Noise amplification during supercontinuum generation in microstructure fiber[J]. Optics Letters, 2003, 28(11): 944-946.

[99] Nicholson J M, Yan M T. Cross-coherence measurements of supercontinua generated in highly-nonlinear, dispersion shifted fiber at 1550 nm[J]. Optics Express, 2004, 12(4): 679-688.

[100] Dudley J M, Coen S. Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers[J]. Optics Letters, 2002, 27(13): 1180-1182.

[101] 韩海年, 赵研英, 张炜, 等. PPLN晶体差频测量飞秒激光脉冲的载波包络相移[J]. 物理学报, 2007, 56(5): 2756-2759.

    Han H N, Zhao Y Y, Zhang W, et al. Measurement of carrier-envelope phase of few cycles Ti∶sapphire laser by difference frequency technique[J]. Acta Physica Sinica, 2007, 56(5): 2756-2759.

[102] Fuji T K, Apolonski A, Krausz F. Self-stabilization of carrier-envelope offset phase by use of difference-frequency generation[J]. Optics Letters, 2004, 29(6): 632-634.

[103] Hitachi K, Ishizawa A, Nishikawa T, et al. Carrier-envelope offset locking with a 2f-to-3f self-referencing interferometer using a dual-pitch PPLN ridge waveguide[J]. Optics Express, 2014, 22(2): 1629-1635.

[104] Reichert J, Holzwarth R, Udem T, et al. Measuring the frequency of light with mode-locked lasers[J]. Optics Communications, 1999, 172: 59-68.

[105] Shen X L, Li W X, Yan M, et al. Electronic control of nonlinear-polarization-rotation mode locking in Yb-doped fiber lasers[J]. Optics Letters, 2012, 37(16): 3426-3428.

[106] Coddington I, Swann W, Newbury N. Coherent dual-comb spectroscopy at high signal-to-noise ratio[J]. Physical Review A, 2010, 82(4): 043817.

[107] Koke S, Grebing C, Frei H, et al. Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise[J]. Nature Photonics, 2010, 4(7): 462-465.

[108] Nakamura T, Ito I, Kobayashi Y. Offset-free broadband Yb∶fiber optical frequency comb for optical clocks[J]. Optics Express, 2015, 23(15): 19376-19381.

[109] Deng Y J, Lu F, Knox W H. Fiber-laser-based difference frequency generation scheme for carrier-envelope-offset phase stabilization applications[J]. Optics Express, 2005, 13(12): 4589-4593.

[110] Baltu ka A, Fuji T K, Kobayashi T. Controlling the carrier-envelope phase of ultrashort light pulses with optical parametric amplifiers[J]. Physical Review Letters, 2002, 88(13): 133901.

[111] Fehrenbacher D, Sulzer P, Liehl A, et al. Free-running performance and full control of a passively phase-stable Er∶fiber frequency comb[J]. Optica, 2015, 2(10): 917-923.

[112] Foreman S M, Marian A, Ye J, et al. Demonstration of a HeNe/CH4-based optical molecular clock[J]. Optics Letters, 2005, 30(5): 570-572.

[113] Mazzotti D, Cancio P, Giusfredi G, et al. Frequency-comb-based absolute frequency measurements in the mid-infrared with a difference-frequency spectrometer[J]. Optics Letters, 2005, 30(9): 997-999.

[114] Maddaloni P, Malara P, Gagliardi G, et al. Mid-infrared fibre-based optical comb[J]. New Journal of Physics, 2006, 8(11): 262.

[115] Malara P, Maddaloni P, Gagliardi G, et al. Absolute frequency measurement of molecular transitions by a direct link to a comb generated around 3-μm[J]. Optics Express, 2008, 16(11): 8242-8249.

[116] Yan M, Li W X, Yang K W, et al. High-power Yb-fiber comb with feed-forward control of nonlinear-polarization-rotation mode-locking and large-mode-area fiber amplification[J]. Optics Letters, 2012, 37(9): 1511-1513.

[117] 吴元杰, 叶慧琪, 韩建, 等. 2.16 m望远镜高分辨率光谱仪的天文光学频率梳[J]. 光学学报, 2016, 36(6): 0614001.

    Wu Y J, Ye H Q, Han J, et al. Astronomical laser frequency comb for high resolution spectrograph of a 2.16-m telescope[J]. Acta Optica Sinica, 2016, 36(6): 0614001.

[118] 杨力, 沈旭玲, 杨康文, 等. 自适应双光梳光谱原理分析与实现[J]. 光学学报, 2018, 38(5): 0514002.

    Yang L, Shen X L, Yang K W, et al. Analysis and realization of adaptive dual-comb spectroscopy[J]. Acta Optica Sinica, 2018, 38(5): 0514002.

[119] 路桥, 时雷, 毛庆和. 双光梳光谱技术研究进展综述[J]. 中国激光, 2018, 45(4): 0300001.

    Lu Q, Shi L, Mao Q H. Research advances in dual-comb spectroscopy[J]. Chinese Journal of Lasers, 2018, 45(4): 0300001.

刘婷婷, 郝强, 曾和平. 全保偏光纤光学频率梳技术[J]. 激光与光电子学进展, 2018, 55(12): 120003. Tingting Liu, Qiang Hao, Heping Zeng. All Polarization-Maintaining Fiber-Based Frequency Combs[J]. Laser & Optoelectronics Progress, 2018, 55(12): 120003.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!