激光与光电子学进展, 2013, 50 (8): 080011, 网络出版: 2013-08-08   

飞秒激光对人类细胞内钙信号的调控作用 下载: 534次

Calcium Signal Modulation of Human Cells by Femtosecond Laser
作者单位
天津大学精密仪器与光电子工程学院 光电信息技术科学教育部重点实验室超快激光研究室, 天津 300072
摘要
飞秒激光以其独特和优良的光学性质,为生物光子学的研究带来了全新的研究领域和技术手段。在细胞和分子生物学的研究中,飞秒激光可以精确地在亚细胞或衍射极限水平上对细胞实现精确的刺激和操作。对于飞秒激光调控人类细胞内钙信号这一全新的现象进行了回顾和综述,讨论了飞秒激光释放细胞钙存储的可能机制,分析了飞秒激光释放细胞钙信号的物理和生理过程,在细胞生物学和分子生物学的水平上探讨了细胞对飞秒激光刺激的应激反应可能的原理,并阐述了由此而来的一系列后续分子和生理过程。这种纯光学的分子信号调节对于相关细胞信号通路的研究具有重要意义,并有望进一步应用于基于飞秒激光的基因表达调节和干细胞分化的研究。
Abstract
By their unique and excellent optical properties, femtosecond lasers have brought novel developments and methodologies in biophotonics researches. In researches of cell and molecular biology, femtosecond lasers can perform precise stimulations and operations to cells at the subcellular or diffraction limit level. In this article, calcium signal modulation in human cells by femtosecond lasers is reviewed, possible mechanism of optical release of cellular calcium store is discussed, and physical and physiological processes of the release are analyzed. The hypothesis of cellular responses to femtosecond lasers is investigated at cellular and molecular level, with demonstrations of following molecular and physiological processes. This all-optical modulation of molecular signals is very important to the researches of cellular signaling pathways, which can be further applied in optical regulation of gene expression and stem-cell differentiation.
参考文献

[1] 刘博文, 胡明列, 宋有建, 等. 微焦耳、百飞秒光子晶体光纤飞秒激光放大器[J]. 中国激光, 2010, 37(9): 2415-2418.

    Liu Bowen, Hu Minglie, Song Youjian, et al.. Photonic crystal fiber femtosecond laser amplifier with millijoules and 100 fs level output [J]. Chinese J Lasers, 2010, 37(9): 2415-2418.

[2] 王清月,胡明列,宋有建 等. 用大模场光子晶体光纤获得高功率飞秒激光 [J]. 中国激光, 2007, 34(12): 1603-1606.

    Wang Qingyue, Hu Minglie, Song Youjian, et al.. Large-mode-area photonic crystal fiber laser output high average power femtosecond pulses [J]. Chinese J. Lasers, 2007, 34(12):1603-1606.

[3] R L Fork, B I Greene, C V Shank. Generation of optical pulses shorter than 0.1psec by colliding pulse mode locking [J]. Appl Phys Lett, 1981, 38(9): 671-672.

[4] S Lefranois, K Kieu, Y Deng, et al.. Scaling of dissipative soliton fiber lasers to megawatt peak powers by use of large-area photonic crystal fiber [J]. Opt Lett, 2010, 35(10): 1569-1571.

[5] 张镇西, 姚翠萍, 王晶, 等. 激光细胞微手术的发展和应用 [J]. 光学学报, 2011, 31(9): 0900124.

    Zhang Zhenxi, Yao Cuiping, Wang Jing, et al.. Development and application of the laser cell microsurgery [J]. Acta Optica Sinica, 2011, 31(9): 0900124.

[6] 杨海峰, 周明, 狄建科, 等. 飞秒激光手术在细胞生物学中的应用 [J]. 激光与光电子学进展, 2009, 46(10): 71-77.

    Yang Haifeng, Zhou Ming, Di Jianke, et al.. Applications of femtosecond laser surgery in cell biology [J]. Laser & Optoelectronics Progress, 2009, 46(10): 71-77.

[7] U K Tirlapur, K Knig. Targeted transfection by femtosecond laser [J]. Nature, 2002, 418(6895): 290-291.

[8] M F Yanik, H Cinar, H N Cinar, et al.. Functional regeneration after laser axotomy [J]. Nature, 2004, 432(7019): 822.

[9] M Stroh, W R Zipfel, R M Williams, et al.. Multiphoton microscopy guides neurotrophin modification with poly(ethylene glycol) to enhance interstitial diffusion [J]. Nature Mater, 2004, 3(7): 489-494.

[10] S H Chung, E Mazur. Surgical applications of femtosecond lasers [J]. J Biophoton, 2009, 2(10): 557-572.

[11] H He, K T Chan, S K Kong, et al.. All-optical human cell fusion by a fiber femtosecond laser [J]. Appl Phys Lett, 2008, 93(16): 163901.

[12] W R Zipfel, R M Williams, W W Webb. Nonlinear magic: multiphoton microscopy in the biosciences [J]. Nature Biotechnol, 2003, 21(11): 1369-1377.

[13] A Uchugonova, K Knig, R Bueckle, et al.. Targeted transfection of stem cells with sub-20 femtosecond laser pulses [J]. Opt Express, 2008, 16(13): 9357-9364.

[14] M J Berridge, M D Bootman, P Lipp. Calcium- a life and death signal [J]. Nature, 1998, 395(6703): 645-648.

[15] H Bito, K Deisseroth, R W Tsien. Ca2+-dependent regulation in neuronal gene expression [J]. Curr Opin Neurobiol, 1997, 7(3): 419-429.

[16] S T Wong, J Athos, X A Figueroa, et al.. Calcium-stimulated adenylyl cyclase activity is critical for hippocampus-dependent long-term memory and late phase LTP [J]. Neuron, 1999, 23(4): 787-798.

[17] J Meldolesi. Calcium signalling: oscillation, activation, expression [J]. Nature, 1998, 392(6679): 863-866.

[18] T Tomida, K Hirose, A Takizawa, et al.. NFAT function as a working memory of Ca2+ signals in decoding Ca2+ oscillation [J]. EMBO J, 2003, 22(15): 3825-3832.

[19] G E Hardingham, S Chawla, C M Johnson, et al.. Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression [J]. Nature, 1997, 385(6613): 260-265.

[20] R E Dolmetsch, K Xu, R S Lewis. Calcium oscillations increase the efficiency and specificity of gene expression [J]. Nature, 1998, 392(6679): 933-936.

[21] W Li, J Llopis, M Whitney, et al.. Cell-permeant caged InsP3 ester shows that Ca2+ spike frequency can optimize gene expression [J]. Nature, 1998, 392(6679): 936-941.

[22] M J Berridge. Inositol trisphosphate and calcium signalling [J]. Nature, 1993, 361(6410): 315-325.

[23] M Endo. Calcium release from the sarcoplasmic reticulum [J]. Physiol Rev, 1977, 57(1): 71-108.

[24] D E Clapham. Calcium signaling [J]. Cell, 2007, 131(6): 1047-1058.

[25] T Hofmann, V Chubanov, T Gudermann, et al.. TRPM5 is a voltage-modulated and Ca2+-activated monovalent selective cation channel [J]. Curr Biol, 2003, 13(13): 1153-1158.

[26] B Nilius, J Prenen, G Droogmans, et al.. Voltage dependence of the Ca2+-activated cation channel TRPM4 [J]. J Biol Chem, 2003, 278(33): 30813-30820.

[27] D E Clapham. TRP channels as cellular sensors [J]. Nature, 2003, 426(6966): 517-524.

[28] M Brini, D Bano, S Manni, et al.. Effects of PMCA and SERCA pump overexpression on the kinetics of cell Ca2+ signaling [J]. EMBO J, 2000, 19(18): 4926-4935.

[29] C Olesen, M Picard, A L Winther, et al.. The structural basis of calcium transport by the calcium pump [J]. Nature, 2007, 450(7172): 1036-1042.

[30] I F Smith, I Parker. Imaging the quantal substructure of single IP3R channel activity during Ca2+ puffs in intact mammalian cells [J]. Proc Natl Acad Sci USA, 2009, 106(15): 6404-6409.

[31] C Hidalgo, R Bull, M I Behrens, et al.. Redox regulation of RyR-mediated Ca2+ release in muscle and neurons [J]. Biol Res, 2004, 37(4): 539-552.

[32] S Patel, J S Marchant, E Brailoiu. Two-pore channels: regulation by NAADP and customized roles in triggering calcium signals [J]. Cell Calcium, 2010, 47(6): 480-490.

[33] I P Hall. Second messengers, ion channels and pharmacology of airway smooth muscle [J]. Eur Respir J, 2000, 15(6): 1120-1127.

[34] M R Logan, C A Mandato. Regulation of the actin cytoskeleton by PIP2 in cytokinesis [J]. Biol Chem, 2006, 98(6): 377-388.

[35] T E Gunter, L Buntinas, G Sparagna, et al.. Mitochondrial calcium transport: mechanism and functions [J]. Cell Calcium, 2000, 28(5-6): 285-296.

[36] A K Stout, H M Raphael, B I Kanterewicz, et al.. Glutamate-induced neuron death requires mitochondrial calcium uptake [J]. Nature Neurosci, 1998, 1(5): 366-373.

[37] Y Kirichok, G Krapivinsky, D E Clapham. The mitochondrial calcium uniporter is a highly selective ion channel [J]. Nature, 2004, 427(6972): 360-364.

[38] E Norberg, S Orrenius, B Zhivotovsky. Mitochondrial regulation of cell death: processing of apoptosis-inducing factor (AIF) [J]. Biochem Biophys Res Commun, 2010, 396(1): 95-100.

[39] K F Ferri, G Kroemer. Organelle-specific initiation of cell death pathways [J]. Nature Cell Biol, 2001, 3(11): E255-E263.

[40] S J Publicover, C L R Barratt. Voltage-operated Ca2+ channels and the acrosome reaction: which channels are present and what do they do [J]. Hum Reprod, 1999, 14(4): 873-879.

[41] C D Benham, R W Tsien. A novel receptor-operated Ca2+-permeable channel activated by ATP in smooth muscle [J]. Nature, 1987, 328(6127): 275-278.

[42] C Peinelt, M Vig, D L Koomoa, et al.. Amplification of CRAC current by STIM1 and CRACM1 (Orai 1) [J]. Nature Cell Biol, 2006, 8(7): 771-773.

[43] R M Luik, B Wang, M Prakriya, et al.. Oligomerization of STIM1 couples ER calcium depletion to CRAC channel activation [J]. Nature, 2008, 454(7203): 538-542.

[44] B A McNally, A Somasundaram, M Yamashita, et al.. Gated regulation of CRAC channel ion selectivity by STIM1 [J]. Nature, 2012, 482(7384): 241-245.

[45] X Yang, H Jin, X Cai, et al.. Structural and mechanistic insights into the activation of stromal interaction molecule 1 (STIM1) [J]. Proc Natl Acad Sci USA, 2012, 109(15): 5657-5662.

[46] X Hou, L Pedi, M M Diver, et al.. Crystal structure of the calcium release-activated calcium channel Orai [J]. Science, 2012, 338(6112): 1308-1311.

[47] D E Clapham. A STIMulate package puts Orai calcium channels to work [J]. Cell, 2009, 136(5): 814-816.

[48] C Y Park, P J Hoover, F M Mullins, et al.. STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1 [J]. Cell, 2009, 136(5): 876-890.

[49] F V Abeele, R Skryma, Y Shuba, et al.. Bcl-2-dependent modulation of Ca2+ homeostasis and store-operated channels in prostate cancer cells [J]. Cancer Cell, 2002, 1(2): 169-179.

[50] M D Bootman, C Fearnley, I Smyrnias, et al.. An update on nuclear calcium signaling [J]. J Cell Sci, 2009, 122(14): 2337-2350.

[51] W Echevarría, M F Leite, M T Guerra, et al.. Regulation of calcium signals in the nuclear by a nucleoplasmic reticulum [J]. Nature Cell Biol, 2003, 5(5): 440-446.

[52] H He, K T Chan, S K Kong. Role of nuclear tubule on the apoptosis of HeLa cells induced by femtosecond laser [J]. Appl Phys Lett, 2010, 96(22): 223701.

[53] P Marius, M T Guerra, M H Nathanson, et al.. Calcium release from ryanodine receptors in the nucleoplasmic reticulum [J]. Cell Calcium, 2006, 39(1): 65-73.

[54] S H Yoo, S W Nam, S K Huh, et al.. Presence of a nucleoplasmic complex composed of the inositol 1,4,5-triphosphate receptor/Ca2+ channel, chromogranin B, and phospholipids [J]. Biochemistry, 2005, 44(25): 9246-9254.

[55] J Gerasimenko, Y Maruyama, A Tepikin, et al.. Calcium signalling in and around the nuclear envelope [J]. Biochem Soc Trans, 2003, 31(1): 76-78.

[56] G Ramazzotti, I Faenza, R Fiume, et al.. The physiology and pathology of inositide signaling in the nucleus [J]. J Cell Physiol, 2010, 226(1): 14-20.

[57] O V Gerasimenko, J V Gerasimenko, A V Tepikin, et al.. ATP-dependent accumulation and inositol trisphosphate- or cyclic ADP-ribose-mediated release of Ca2+ from the nuclear envelope [J]. Cell, 1995, 80(3): 439-444.

[58] J P Humbert, N Matter, J C Artault, et al.. Inositol 1,4,5-trisphophate receptor is located to the inner nuclear membrane vindicating regulation of nuclear calcium signaling by inositol 1,4,5-trisphophate. Discrete distribution of inositol phosphate receptors to inner and outer nuclear membranes [J]. J Biol Chem, 1996, 271(1): 478-485.

[59] N Nishimura, C B Schaffer, B Friedman, et al.. Targeted insult to subsurface cortical blood vessels using ultrashort laser pulses: three models of stroke [J]. Nature Methods, 2006, 3(2): 99-108.

[60] V Kohli, A Y Elezzabi, J P Acker. Cell nanosurgery using ultrashort (femtosecond) laser pulses: applications to membrane surgery and cell isolation [J]. Laser Surg Med, 2005, 37(3): 227-230.

[61] N I Smith, K Fujita, T Kaneko, et al.. Generation of calcium waves in living cells by pulsed-laser-induced photodisruption [J]. Appl Phys Lett, 2001, 79(8): 1208-1210.

[62] S Iwanaga, T Kaneko, K Fujita, et al.. Location-dependent photogeneration of calcium waves in HeLa cells [J]. Cell Biochem Biophys, 2006, 45(2): 167-176.

[63] N I Smith, S Iwanaga, T Beppu, et al.. Photostimulation of two types of Ca2+ waves in rat pheochromocytoma PC12 cells by ultrashort pulsed near-infrared laser irradiation [J]. Laser Phys Lett, 2006, 3(3): 154-161.

[64] S Iwanaga, N I Smith, K Fujita, et al.. Slow Ca2+ wave stimulation using low repetition rate femtosecond pulsed irradiation [J]. Opt Express, 2006, 14(2): 717-725.

[65] H He, S K Kong, K T Chan. Identification of source of calcium in HeLa cells by femtosecond laser excitation [J]. J Biomed Opt, 2010, 15(5): 057010.

[66] J Baumgart, W Bintig, A Ngezahayo, et al.. Fs-laser-induced Ca2+ concentration change during membrane perforation for cell transfection [J]. Opt Express, 2010, 18(3): 2219-2229.

[67] A Fabiato. Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum [J]. Am J Physiol Cell Physiol, 1983, 245(1): C1-C14.

[68] A Galione, A McDougall, W B Busa, et al.. Redundant mechanisms of calcium-induced calcium release underlying calcium waves during fertilization of sea urchin eggs [J]. Science, 1993, 261(5119): 348-352.

[69] D Day, C G Cranfield, M Gu. High-speed fluorescence imaging and intensity profiling of femtosecond-induced calcium transients [J]. Int J Biomed Imaging, 2006, 2006: 93438.

[70] H He, S Wang, X Li, et al.. Ca2+ waves across gaps in non-excitable cells induced by femtosecond laser exposeure [J]. Appl Phys Lett, 2012, 100(17): 173704.

[71] L Avery, H R Horvitz. Pharyngeal pumping continues after laser killing of the pharyngeal nervous system of C. elegans [J]. Neuron, 1989, 3(4): 473-485.

[72] J Wells, C Kao, E D Jansen, et al.. Application of infrared light for in vivo neural stimulation [J]. J Biomed Opt, 2005, 10(6): 064003.

[73] D M Harris, S M Bierer, J D Wells, et al.. Optical nerve stimulation for a vestibular prosthesis [C]. SPIE, 2009, 7180: 71800R.

[74] N M Fried, G A Lagoda, N J Scott, et al.. Laser stimulation of the cavernous nerves in the rat prostate, in vivo: optimization of wavelength, pulse energy, and pulse repetition rate [C]. 30th Annual International IEEE EMBS Conference, 2008. 2777-2780.

[75] X Liu, X Lv, S Zeng, et al.. Noncontact and nondestructive identification of neural circuits with a femtosecond laser [J]. Appl Phys Lett, 2009, 94(6): 061113.

[76] Y Zhao, Y Zhang, W Zhou, et al.. Characteristics of calcium signaling in astrocytes induced by photostimulation with femtosecond laser [J]. J Biomed Opt, 2010, 15(3): 035001.

[77] Y Zhao, X Liu, W Zhou, et al.. Astrocyte-to-neuron signaling in response to photostimulation with a femtosecond laser [J]. Appl Phys Lett, 2010, 97(6): 063703.

[78] P E Hockberger, T A Skimina, V E Centonze, et al.. Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells [J]. Proc Natl Acad Sci USA, 1999, 96(11): 6255-6260.

[79] U K Tirlapur, K. Knig, C Peuckert, et al.. Femtosecond near-infrared laser pulses elicit generation of reactive oxygen species in mammalian cells leading to apoptosis-like death [J]. Exp Cell Res, 2001, 263(1): 88-97.

[80] J Baumgart, K Kuetemeyer, W Bintig, et al.. Repetition rate dependency of reactive oxygen species formation during femtosecond laser-based cell surgery [J]. J Biomed Opt, 2009, 14(5): 054040.

[81] H He, K T Chan, S K Kong, et al.. Mechanism of oxidative stress generation in cells by localized near-infrared femtosecond laser excitation [J]. Appl Phys Lett, 2009, 95(23): 233702.

[82] A V Zima, L A Blatter. Redox regulation of cardiac calcium channels and transporters [J]. Cardiovasc Res, 2006, 71(2): 310-321.

[83] Y Yan, J Liu, C Wei, et al.. Bidirectional regulation of Ca2+ sparks by mitochondria-derived reactive oxygen species in cardiac myocytes [J]. Cardiovasc Res, 2008, 77(2): 432-441.

[84] D M Brown, K Donaldson, P J Borm, et al.. Calcium and ROS-mediated activation of transcription factors and TNF-alpha cytokine gene expression in macrophages exposed to ultrafine particles [J]. Am J Physiol Lung Cell Mol Physiol, 2004, 286(2): L344-L353.

[85] S Papa, V P Skulachev. Reactive oxygen species, mitochondria, apoptosis and aging [J]. Mol Cell Biochem, 1997, 174(1-2): 305-319.

[86] H U Simon, A H Yehia, F L Schaffer. Role of reactive oxygen species (ROS) in apoptosis induction [J]. Apoptosis, 2000, 5(5): 415-418.

[87] J E Klaunig, L M Kamendulis. The role of oxidative stress in carcinogenesis [J]. Annu Rev Pharmacol Toxicol, 2004, 44: 239-267.

[88] T Karu. Photobiology of low-power laser effects [J]. Health Phys, 1989, 56(5): 691-704.

王艺森, 贺号, 王清月. 飞秒激光对人类细胞内钙信号的调控作用[J]. 激光与光电子学进展, 2013, 50(8): 080011. Wang Yisen, He Hao, Wang Chingyue. Calcium Signal Modulation of Human Cells by Femtosecond Laser[J]. Laser & Optoelectronics Progress, 2013, 50(8): 080011.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!