激光与光电子学进展, 2019, 56 (17): 170612, 网络出版: 2019-09-05   

多芯光纤特性及其传感应用 下载: 3084次

Multi-Core Fiber Characteristics and Its Sensing Applications
作者单位
桂林电子科技大学电子工程与自动化学院光子学研究中心, 广西 桂林 541004
引用该论文

苑立波. 多芯光纤特性及其传感应用[J]. 激光与光电子学进展, 2019, 56(17): 170612.

Libo Yuan. Multi-Core Fiber Characteristics and Its Sensing Applications[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170612.

参考文献

[1] Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres[J]. Nature Photonics, 2013, 7(5): 354-362.

[2] Saitoh K, Matsuo S. Multicore fibers for large capacity transmission[J]. Nanophotonics, 2013, 2(5/6): 441-454.

[3] MatsuoS, SasakiY, IshidaI, et al. Recent progress in multi core and few mode fiber[C]∥Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013, March 17-21, 2013, Anaheim, CA, USA. Washington, D. C.: OSA, 2013: OM3I. 3.

[4] HayashiT. Chapter 9: multi-core optical fibers[M] ∥Kaminow I, Li T Y, Willner A E. Optical Fiber Telecommunications Volume VIA: Components and Subsystems. New York: Academic Press, 2013: 321- 352.

[5] SanoA, KobayashiT, YamanakaS, et al. 102.3-Tb/s (224×548-Gb/s) C- and extended L-band all-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone[C]∥Optical Fiber Communication Conference, March 4-8, 2012, Los Angeles, California, USA. Washington, D. C.: OSA, 2012: PDP5C. 3.

[6] Zhang SL, Huang MF, YamanF, et al. 40×117.6 Gb/s PDM-16QAM OFDM transmission over 10, 181 km with soft-decision LDPC coding and nonlinearity compensation[C]∥Optical Fiber Communication Conference, March 4-8, 2012, Los Angeles, California, USA. Washington, D. C.: OSA, 2012: PDP5C. 4.

[7] Cai JX, CaiY, DavidsonC, et al. 20 Tbit/s capacity transmission over 6860 km[C]∥Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, March 6-10, 2011, Los Angeles, California, USA. Washington, D. C.: OSA, 2011: PDPB4.

[8] Essiambre R J, Kramer G, Winzer P J, et al. Capacity limits of optical fiber networks[J]. Journal of Lightwave Technology, 2010, 28(4): 662-701.

[9] Essiambre R J, Tkach R W. Capacity trends and limits of optical communication networks[J]. Proceedings of the IEEE, 2012, 100(5): 1035-1055.

[10] MoriokaT. New generation optical infrastructure technologies: “EXAT initiative” towards 2020 and beyond[C]∥2009 14th OptoElectronics and Communications Conference, July 13-17, 2009, Vienna, Austria. New York: IEEE, 2009: 10846198.

[11] IanoS, SatoT, SentsuiS, et al. Multicore optical fiber[C]∥Optical Fiber Communication, March 6, 1979, Washington, D. C., USA. Washington, D. C.: OSA, 1979: WB1.

[12] InaoS, SatoT, HondoH, et al. High density multicore-fiber cable[C]∥International Wire & Cable Symp(IWCS). [S. l.: s. n. ], 1979: 370- 384.

[13] Berdagué S, Facq P. Mode division multiplexing in optical fibers[J]. Applied Optics, 1982, 21(11): 1950-1955.

[14] KashimaN, MaekawaE, NiheiF. New type of multicore fiber[C]∥Optical Fiber Communication, April 13, 1982, Phoenix, Arizona, USA. Washington, D. C.: OSA, 1982: ThAA5.

[15] Sumida S, Maekawa E, Murata H. Design of bunched optical-fiber parameters for 1.3-μm wavelength subscriber line use[J]. Journal of Lightwave Technology, 1986, 4(8): 1010-1015.

[16] Nihei F, Yamamoto Y, Kojima N. Optical subscriber cable technologies in Japan[J]. Journal of Lightwave Technology, 1987, 5(6): 809-821.

[17] Sumida S, Maekawa E, Murata H. Fundamental studies on flat bunched optical fibers[J]. Journal of Lightwave Technology, 1985, 3(1): 159-164.

[18] Le NG. Ultra high density cables using a new concept of bunched multicore monomode fibers: a key for the future FTTH networks[C]∥Proceedings of the 43rd International Wire & Cable Symposium (IWCS), October 14-17, 1994, Atlanta, GA. New York: NASA, 1994: 203- 210.

[19] Stern J R, Ballance J W, Faulkner D W, et al. Passive optical local networks for telephony applications and beyond[J]. Electronics Letters, 1987, 23(24): 1255-1257.

[20] Taylor D M, Bennett C R, Shepherd T J, et al. Demonstration of multi-core photonic crystal fibre in an optical interconnect[J]. Electronics Letters, 2006, 42(6): 331-332.

[21] ImamuraK, MukasaK, SugizakiR, et al. Multi-core holey fibers for ultra large capacity wide-band transmission[C]∥2008 34th European Conference on Optical Communication, September 21-25, 2008, Brussels, Belgium. New York: IEEE, 2008: 10426525.

[22] ImamuraK, MukasaK, MimuraY, et al. Multi-core holey fibers for the long-distance (>100 km) ultra large capacity transmission[C]∥Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, March 22-26, 2009, San Diego, California, USA. Washington, D. C.: OSA, 2009: OTuC3.

[23] Koshiba M, Saitoh K, Kokubun Y. Heterogeneous multi-core fibers: proposal and design principle[J]. IEICE Electronics Express, 2009, 6(2): 98-103.

[24] SakaguchiJ, Puttnam BJ, KlausW, et al. 19-core fiber transmission of 19×100×172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s[C]∥Optical Fiber Communication Conference, March 4-8, 2012, Los Angeles, California, USA. Washington, D. C.: OSA, 2012: PDP5C. 1.

[25] RyfR, EssiambreR, GnauckA, et al. Space-division multiplexed transmission over 4200 km 3-core microstructured fiber[C]∥Optical Fiber Communication Conference, March 4-8, 2012, Los Angeles, California, USA. Washington, D. C.: OSA, 2012: PDP5C. 2.

[26] Liu X, Chandrasekhar S, Chen X, et al. 1.12-Tb/s 32-QAM-OFDM superchannel with 86-b/s/Hz intrachannel spectral efficiency and space-division multiplexed transmission with 60-b/s/Hz aggregate spectral efficiency[J]. Optics Express, 2011, 19(26): B958-B964.

[27] Lee BG, Kuchta DM, Doany FE, et al. 120-Gb/s 100-m transmission in a single multicore multimode fiber containing six cores interfaced with a matching VCSEL array[C]∥IEEE Photonics Society Summer Topicals 2010, July 19-21, 2010, Playa del Carmen, Mexico. New York: IEEE, 2010: 223- 224.

[28] Zhu BY, Taunay TF, Yan MF, et al. 7×10-Gb/s multicore multimode fiber transmissions for parallel optical data links[C]∥36th European Conference and Exhibition on Optical Communication, September 19-23, 2010, Torino, Italy. New York: IEEE, 2010: 11637154.

[29] Zhu B, Taunay T F, Yan M F, et al. Seven-core multicore fiber transmissions for passive optical network[J]. Optics Express, 2010, 18(11): 11117-11122.

[30] Yuan L B, Yang J, Liu Z H, et al. In-fiber integrated Michelson interferometer[J]. Optics Letters, 2006, 31(18): 2692-2694.

[31] 苑立波, 杨军, 刘志海. 集成为单根光纤的迈克尔逊干涉仪: 200610010422.2[P].2007-02-07.

    Yuan LB, YangJ, Liu Z H. In-fiber integrated Michelson interferometer: 200610010422.2[P].2007-02-07.

[32] 苑立波, 杨军, 刘志海. 纤维集成式马赫曾德干涉仪及其制造方法: 200710072625.9[P].2008-01-16.

    Yuan LB, YangJ, Liu Z H. In-fiber integrated M-Z interferometer and the fabrication methods:200710072625.9[P]. 2008-01-16.

[33] Yuan L B, Liu Z H, Yang J. Coupling characteristics between single-core fiber and multicore fiber[J]. Optics Letters, 2006, 31(22): 3237-3239.

[34] 苑立波, 刘志海, 杨军. 单芯光纤与多芯光纤耦合器及其融接拉锥耦合方法: 200610151033.1[P].2006-11-17.

    Yuan LB, Liu ZH, Yang J. Acoupler and its fabrication methods for multicore fibers by welding and tapering with a single core optical fiber: 200610151033.1[P].2006-11-17.

[35] Yuan L B, Liu Z H, Yang J, et al. Bitapered fiber coupling characteristics between single-mode single-core fiber and single-mode multicore fiber[J]. Applied Optics, 2008, 47(18): 3307-3312.

[36] Liu Z H, Bo F S, Wang L, et al. Integrated fiber Michelson interferometer based on poled hollow twin-core fiber[J]. Optics Letters, 2011, 36(13): 2435-2437.

[37] Yuan L B, Yang J, Guan C Y, et al. Three-core fiber-based shape-sensing application[J]. Optics Letters, 2008, 33(6): 578-580.

[38] Yuan L B, Dai Q, Tian F J, et al. Linear-core-array microstructured fiber[J]. Optics Letters, 2009, 34(10): 1531-1533.

[39] Yuan L B. Recent progress of in-fiber integrated interferometers[J]. Photonic Sensors, 2011, 1(1): 1-5.

[40] Yuan L B. In-fiber integrated optic devices for sensing applications[J]. Proceedings of SPIE, 2012, 8421: 84211D.

[41] Yuan LB. In-fiber integrated optic devices and its applications[C]∥The 5th International Symposium on Photonics and Optoelectronics (SOPO2013), May 23-25, 2013, Beijing, China. [S.l.: s.n.], 2013.

[42] Marcuse D. Influence of curvature on the losses of doubly clad fibers[J]. Applied Optics, 1982, 21(23): 4208-4213.

[43] Snyder A W. Coupled-mode theory for optical fibers[J]. Journal of the Optical Society of America, 1972, 62(11): 1267-1277.

[44] Hardy A, Streifer W. Coupled mode theory of parallel waveguides[J]. Journal of Lightwave Technology, 1985, 3(5): 1135-1146.

[45] Streifer W, Osinski M, Hardy A. Reformulation of the coupled-mode theory of multiwaveguide systems[J]. Journal of Lightwave Technology, 1987, 5(1): 1-4.

[46] Chuang S L. A coupled mode formulation by reciprocity and a variational principle[J]. Journal of Lightwave Technology, 1987, 5(1): 5-15.

[47] Haus H, Huang W, Kawakami S, et al. Coupled-mode theory of optical waveguides[J]. Journal of Lightwave Technology, 1987, 5(1): 16-23.

[48] Huang W P. Coupled-mode theory for optical waveguides: an overview[J]. Journal of the Optical Society of America A, 1994, 11(3): 963-983.

[49] Koshiba M, Saitoh K, Takenaga K, et al. Multi-core fiber design and analysis: coupled-mode theory and coupled-power theory[J]. Optics Express, 2011, 19(26): B102-B111.

[50] TakenagaK, ArakawaY, TanigawaS, et al. Reduction of crosstalk by trench-assisted multi-core fiber[C]∥Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2011, March 6-10, 2011, Los Angeles, California, USA. Washington, D. C.: OSA, 2011: OWJ4.

[51] ImamuraK, MukasaK, Sugizaki R. Trench assisted multi-core fiber with large Aeff over 100 μm 2 and low attenuation loss[C]∥37th European Conference and Exposition on OpticalCommunications, September 18-22, 2011, Geneva, Switzerland. Washington, D. C.: OSA, 2011: Mo. 1. LeCervin.1.

[52] Hayashi T, Taru T, Shimakawa O, et al. Design and fabrication of ultra-low crosstalk and low-loss multi-core fiber[J]. Optics Express, 2011, 19(17): 16576-16592.

[53] Hayashi T, Taru T, Shimakawa O, et al. Characterization of crosstalk in ultra-low-crosstalk multi-core fiber[J]. Journal of Lightwave Technology, 2012, 30(4): 583-589.

[54] Hayashi T, Taru T, Nagashima T, et al. Multi-core fiber for high-capacity long-haul spatially-multiplexed transmission[J]. SEI Technical Review, 2013, 7(77): 14-22.

[55] SaitohK, MatsuiT, SakamotoT, et al. Multi-core hole-assisted fibers for high core density space division multiplexing[C]∥Opto-Electronics and Communications Conference (OECC), July 5-9, 2010, Sapporo, Japan. New York: IEEE, 2010: 11570089.

[56] KumarS, Manyam UH, Srikant V. Optical fibers having cores with different propagation constants, methods of manufacturing same: US6611648[P/OL].2003-08-26[2019-05-05]. https: ∥patents.glgoo.top/patent/US6611648B2/en.

[57] Sakaguchi J, Puttnam B J, Klaus W, et al. 305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber[J]. Journal of Lightwave Technology, 2013, 31(4): 554-562.

[58] Jain S, Castro C, Jung Y M, et al. 32-core erbium/ytterbium-doped multicore fiber amplifier for next generation space-division multiplexed transmission system[J]. Optics Express, 2017, 25(26): 32887-32896.

[59] Marcuse D. Curvature loss formula for optical fibers[J]. Journal of the Optical Society of America, 1976, 66(3): 216-220.

[60] Schermer R T, Cole J H. Improved bend loss formula verified for optical fiber by simulation and experiment[J]. IEEE Journal of Quantum Electronics, 2007, 43(10): 899-909.

[61] Sharma A B. Al-Ani A H, Halme S J. Constant-curvature loss in monomode fibers: an experimental investigation[J]. Applied Optics, 1984, 23(19): 3297-3301.

[62] Nagano K, Kawakami S, Nishida S. Change of the refractive index in an optical fiber due to external forces[J]. Applied Optics, 1978, 17(13): 2080-2085.

[63] HayashiT, NagashimaT, ShimakawaO, et al. Crosstalk variation of multi-core fibre due to fibre bend[C]∥36th European Conference and Exhibition on Optical Communication, September 19-23, 2010, Torino, Italy. New York: IEEE, 2010: 11636875.

[64] Nakazawa M, Yoshida M, Hirooka T. Nondestructive measurement of mode couplings along a multi-core fiber using a synchronous multi-channel OTDR[J]. Optics Express, 2012, 20(11): 12530-12540.

[65] Klaus W, Sakaguchi J, Puttnam B J, et al. Free-space coupling optics for multicore fibers[J]. IEEE Photonics Technology Letters, 2012, 24(21): 1902-1905.

[66] TottoriY, KobayashiT, WatanabeM. Low loss optical connection module for 7-core multi-core fiber and seven single mode fibers[C]∥2012 IEEE Photonics Society Summer Topical Meeting Series, July 9-11, 2012, Seattle, WA, USA. New York: IEEE, 2012: 232- 233.

[67] Thomson R R, Bookey H T, Psaila N D, et al. Ultrafast-laser inscription of a three dimensional fan-out device for multicore fiber coupling applications[J]. Optics Express, 2007, 15(18): 11691-11697.

[68] Neugroschl D, Kopp V I, Singer J, et al. “Vanishing-core” tapered coupler for interconnect applications[J]. Proceedings of SPIE, 2009, 7221: 72210G.

[69] Kopp VI, ParkJ, WlodawskiM, et al. Pitch reducing optical fiber array and multicore fiber for space-division multiplexing[C]∥2013 IEEE Photonics Society Summer Topical Meeting Series, July 8-10, 2013, Waikoloa, HI, USA. New York: IEEE, 2013: 99- 100.

[70] Kopp V I, Park J, Wlodawski M, et al. Chiral fibers: microformed optical waveguides for polarization control, sensing, coupling, amplification, and switching[J]. Journal of Lightwave Technology, 2014, 32(4): 605-613.

[71] Kopp VI, ParkJ, Wlodawski MS, et al. Vanishing core optical waveguides for coupling, amplification, sensing, and polarization control[C]∥Advanced Photonics, July 27-31, 2014, Barcelona, Spain. Washington, D. C.: OSA, 2014: SoW1B. 3.

[72] Snyder AW, Love JD. Bends[M] ∥Optical waveguide theory. Boston, MA: Springer, 1983: 179- 188.

[73] Tian F J, Yuan L B, Dai Q, et al. Design and fabrication of embedded two elliptical cores hollow fiber[J]. Proceedings of SPIE, 2011, 8199: 819911.

[74] Tian F J, Yuan L B, Dai Q, et al. Embedded multicore hollow fiber with high birefringence[J]. Applied Optics, 2011, 50(33): 6162-6167.

[75] Guan C Y, Tian F J, Dai Q, et al. Characteristics of embedded-core hollow optical fiber[J]. Optics Express, 2011, 19(21): 20069-20078.

[76] Jin W, Stewart G, Wilkinson M, et al. Compensation for surface contamination in a D-fiber evanescent wave methane sensor[J]. Journal of Lightwave Technology, 1995, 13(6): 1177-1183.

[77] Chen X, Zhou K, Zhang L, et al. Optical chemsensors utilizing long-period fiber gratings UV-inscribed in D-fiber with enhanced sensitivity through cladding etching[J]. IEEE Photonics Technology Letters, 2004, 16(5): 1352-1354.

[78] Chandani S M. Jaeger N A F. Fiber-optic temperature sensor using evanescent fields in D fibers[J]. IEEE Photonics Technology Letters, 2005, 17(12): 2706-2708.

[79] Chiu M H, Wang S F, Chang R S. D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry[J]. Optics Letters, 2005, 30(3): 233-235.

[80] Fleming J W. Dispersion in GeO2-SiO2 glasses[J]. Applied Optics, 1984, 23(24): 4486-4493.

[81] Tian F J, Yuan L B, Dai Q, et al. Birefringence analysis of a two elliptical cores hollow fiber based on finite element method[J]. Proceedings of SPIE, 2012, 8351: 83510O.

[82] 苑立波, 戴强, 杨军, 等. 一种平行阵列多芯光纤及其制备方法: 200910071521.5[P].2009-09-16.

    Yuan LB, DaiQ, YangJ, et al. A parallel array multi-core optical fiber and the fabrication method:200910071521.5[P]. 2009-09-16.

[83] Guan C Y, Yuan L B, Dai Q, et al. Supermodes analysis for linear-core-array microstructured fiber[J]. Journal of Lightwave Technology, 2009, 27(11): 1741-1745.

[84] Beach R J, Feit M D, Mitchell S C, et al. Phase-locked antiguided multiple-core ribbon fiber[J]. IEEE Photonics Technology Letters, 2003, 15(5): 670-672.

[85] Drachenberg D, Messerly M, Pax P, et al. First multi-watt ribbon fiber oscillator in a high order mode[J]. Optics Express, 2013, 21(15): 18089-18096.

[86] 苑立波, 戴强, 田凤军, 等. 一种环形分布多芯光纤及其制备方法: 201010138977.1[P].2010-09-22.

    Yuan LB, DaiQ, Tian FJ, et al. Multicore optical fiber with annular distributed cores and its fabrication method:201010138977.1[P]. 2010-09-22.

[87] Elkin N N, Napartovich A P, Sukharev A G, et al. Direct numerical simulation of radiation propagation in a multicore fiber[J]. Optics Communications, 2000, 177: 207-217.

[88] Wrage M, Glas P, Fischer D, et al. Phase-locking of a multicore fiber laser by wave propagation through an annular waveguide[J]. Optics Communications, 2002, 205(4/5/6): 367-375.

[89] Wrage M, Glas P, Leitner M, et al. Experimental and numerical determination of coupling constant in a multicore fiber[J]. Optics Communications, 2000, 175(1/2/3): 97-102.

[90] Gander MJ, Galliot E A C, McBride R, et al. Bend measurement using multicore optical fiber[C]∥12th International Conference on Optical Fiber Sensors, October 28, 1997, Williamsburg, Virginia, USA. Washington, D. C.: OSA, 1997: OWC6.

[91] Yuan L B, Yang J, Liu Z H. A compact fiber-optic flow velocity sensor based on a twin-core fiber Michelson interferometer[J]. IEEE Sensors Journal, 2008, 8(7): 1114-1117.

[92] Yuan L B. Recent progress of in-fiber integrated interferometers[J]. Photonic Sensors, 2011, 1(1): 1-5.

[93] Salceda-Delgado G, van Newkirk A, Antonio-Lopez J E, et al. . Compact fiber-optic curvature sensor based on super-mode interference in a seven-core fiber[J]. Optics Letters, 2015, 40(7): 1468-1471.

[94] Romaniuk R S, Dorosz J. Temperature sensor based on double-core optical fiber[J]. Proceedings of SPIE, 2002, 4887: 55-66.

[95] Rugeland P, Margulis W. Revisiting twin-core fiber sensors for high-temperature measurements[J]. Applied Optics, 2012, 51(25): 6227-6232.

[96] Antonio-Lopez J E, Eznaveh Z S, LiKamWa P, et al. . Multicore fiber sensor for high-temperature applications up to 1000 ℃[J]. Optics Letters, 2014, 39(15): 4309-4312.

[97] van Newkirk A, Antonio-Lopez E, Salceda-Delgado G, et al. . Optimization of multicore fiber for high-temperature sensing[J]. Optics Letters, 2014, 39(16): 4812-4815.

[98] Zhou A, Li G P, Zhang Y H, et al. Asymmetrical twin-core fiber based Michelson interferometer for refractive index sensing[J]. Journal of Lightwave Technology, 2011, 29(19): 2985-2991.

[99] Liu Z H, Wei Y, Zhang Y, et al. Twin-core fiber SPR sensor[J]. Optics Letters, 2015, 40(12): 2826-2829.

[100] Liu Z H, Wei Y, Zhang Y, et al. A multi-channel fiber SPR sensor based on TDM technology[J]. Sensors and Actuators B: Chemical, 2016, 226: 326-331.

[101] Clements G M. Fiber optic sensor for precision 3-D position measurement: US6888623[P/OL].2005-05-03[2019-05-05]. https: ∥patents.google.com/patent/US6888623B2/en.

[102] Duncan R G, Froggatt M E, Kreger S T, et al. High-accuracy fiber-optic shape sensing[J]. Proceedings of SPIE, 2007, 6530: 65301S.

[103] Duncan RG, Raum MT, Cadogan DP, et al. Use of high spatial resolution fiber-optic shape sensors to monitor the shape of deployable space structures[C]. AIP Conference Proceedings, 2005, 746( 1): 880- 886.

[104] KluteS, DuncanR, FielderR, et al. Fiber-optic shape sensing and distributed strain measurements on a morphing chevron[C]∥44th AIAA Aerospace Sciences Meeting and Exhibit, January 9-12, 2006, Reno, Nevada. New York: AIAA, 2006: 624.

[105] ArrittB, MurpheyT, Dumm HP, et al. Demonstration of the use of fiber-optics, with integrated fiber-Bragg gratings, for shape determination of large deployable structures[C]∥48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, April 23-26, 2007, Honolulu, Hawaii. New York: AIAA, 2007: 2006.

[106] Jutte CV, Ko WL, Stephens CA, et al. Deformed shape calculation of a full-scale wing using fiber optic strain data from a ground loads test[M]. New York: National Aeronautics and Space Administration, 2011.

[107] RichardsL, Parker AR, Ko WL, et al. Real-time in-flight strain and deflection monitoring with fiber optic sensors[M]. New York: National Aeronautics and Space Administration, 2008.

[108] GinnS. Flexible wing designs with sensor control feedback for demonstration on the X-56A (MUTT)[M]. New York: National Aeronautics and Space Administration, 2012.

[109] Kremp T, Feder K S, Ko W, et al. Performance characteristics of continuous multicore fiber optic sensor arrays[J]. Proceedings of SPIE, 2017, 10058: 100580V.

[110] Froggatt ME, Klein JW, Gifford DK, et al. Optical position and/or shape sensing: US8773650[P/OL]. 2014-07-08[2019-05-05]. https: ∥patents.glgoo.top/patent/US8773650B2/en.

[111] Lally E M, Reaves M, Horrell E, et al. Fiber optic shape sensing for monitoring of flexible structures[J]. Proceedings of SPIE, 2012, 8345: 83452Y.

苑立波. 多芯光纤特性及其传感应用[J]. 激光与光电子学进展, 2019, 56(17): 170612. Libo Yuan. Multi-Core Fiber Characteristics and Its Sensing Applications[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170612.

本文已被 10 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!