红外与毫米波学报, 2019, 38 (2): 02254, 网络出版: 2019-05-10   

基于频率梳的太赫兹辐射功率密度测量

Terahertz spatial radiant power density measurements based on terahertz frequency comb
作者单位
1 中国计量大学 计量测试工程学院, 浙江 杭州 310018
2 中国计量科学研究院 光学所, 北京 100029
摘要
为实现太赫兹辐射特性精准认知, 开展太赫兹辐射功率密度测量研究.通过光学频率梳产生太赫兹频率梳, 利用太赫兹频率梳实现太赫兹辐射源空间辐射功率密度测量.本文利用电光采样和光电导探测两种方式, 实现了100 GHz辐射源空间辐射功率密度测量; 将100 GHz辐射总功率溯源到标准太赫兹功率计, 实现太赫兹辐射功率密度绝对测量.分析比较了利用800 nm空间光进行电光采样和利用1550 nm光纤激光进行光电导探测的测量结果.在不同距离下, 对太赫兹辐射源的空间辐射功率密度进行了测量和量值溯源, 实验揭示了太赫兹辐射传输的空间演化特性.
Abstract
Terahertz frequency comb, which is generated from femtosecond frequency comb, is applied to measure the spatial radiant power density of terahertz source. Two technologies, electro-optic sampling and photoconductive detection, are applied to generate terahertz frequency comb, and the spatial power density of a 100 GHz source is measured with both of these two techniques. The total radiant power is traceable to a standard terahertz radiometer, and the absolute power density of the terahertz source is obtained. The measurement results with both of the two techniques, electro-optic sampling with 800 nm femtosecond optical pulse in free space and photoconductive antenna detection with 1550 nm femtosecond optical pulse in fiber, are analyzed and compared. Moreover, the spatial power density of the terahertz radiation at different distance away from the terahertz source are measured, and the involvement of the terahertz radiation in free space is experimentally studied.
参考文献

[1] Siegel P H. Terahertz technology [J]. IEEE Transactionson Microwave Theory and Techniques, 2002, 50(3): 910-928.

[2] Sirtori C. Bridge for the terahertz gap [J]. Nature News and Views, 2002, 417: 132-133.

[3] Ferguson B, Zhang X C. Materials for terahertz science and technology[J]. Nature Materials, 2002, 1(1): 26-33.

[4] Kleine-Ostmann T, Schrader T, Bieler M, et al. THz metrology[J]. Frequenz, 2008, 62: 137-148.

[5] Werner L, Hübers H-W, Meindl P, et al. Towards traceable radiometry in the terahertz region[J]. Metrologia, 2009, 46: S160-S164.

[6] Lehman J H, Lee B, Grossman E N. Far infrared thermal detectors for laser radiometry using a carbon nanotube array[J]. Applied Optics, 2011, 50(21) 4099-4104.

[7] Deng Y, Sun Q, Yu J, et al. Broadband high-absorbance coating for terahertz radiometry[J]. Optics Express, 2013, 21(5): 5737-5742.

[8] Steiger A, Kehrt M, Monte C, et al. Traceable terahertz power measurement from 1 THz to 5 THz[J]. Optics Express, 2013, 21(12): 14466-14473.

[9] Steiger A, Müller R, Remesal O A, et al. Terahertz laser power measurement comparison[J]. IEEE Transactions on Terahertz Science and Technology, 2016, 6(5): 664-669.

[10] Naftaly M, Dudley R. Linearity calibration of amplitude and power measurements in terahertz systems and detectors[J]. Optics Letters, 2009, 34(5):674-676.

[11] Naftaly M, Dudley R A, Fletcher J R, et al. Frequency calibration of terahertz time-domain spectrometers[J]. Journal of the Optical Society of America B, 2009, 26(7):1357-1392.

[12] Deng Y, Sun Q, Yu J. On-line calibration for linear time-base error correction of terahertz spectrometers with echo pulses[J]. Metrologia, 2014, 51(1):18-24.

[13] Yokoyama S, Nakamura R, Nose M, et al. Terahertz spectrum analyzer based on a terahertz frequency comb[J]. Optics Express, 2008, 16(17): 13052-13061.

[14] Füser H, Judaschke R, Bieler M. High-precision frequency measurements in the THz spectral region using an unstabilized femtosecond laser[J]. Applied Physics Letters, 2011, 99:121111.

[15] Füser H, Bieler M. Frequency, amplitude, and phase measurements of GHz and THz sources using unstabilized THz frequency combs Frequency[C]. Proceedings of SPIE 8624:Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications VI, (San Francisco, California, United States, March 27, 2013) p 86240T.

[16] Deng Y, Füser H, Bieler M. Absolute intensity measurements of CW GHz and THz radiation using electro-optic sampling[J]. IEEE Transactions on Instrumentation & Measurement, 2015, 64(6): 1734-1740.

[17] SUN Qing, YANG Yi, MENG Fei, et al. High-precision measurement of terahertz frequency based on frequency comb[J]. Acta Optica Sinica (孙青, 杨奕, 孟飞, 等. 基于频率梳的太赫兹频率精密测量方法研究, 光学学报) 2016, 36(4): 0412002.

[18] Jones D, Diddams S, Ranka J, et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis[J]. Science, 2000, 288(5466): 635-639.

[19] Füser H, Bieler M. Terahertz frequency combs: Theoretical aspects and applications[J]. J Infrared Milli Terahz Waves, 2014, 35:585-609.

[20] Deng Y, Li J, Sun Q. Traceable measurement of CW and pulse terahertz power with terahertz radiometer[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 3800306.

[21] DENG Yu-Qiang, SUN Qing, YU Jing, et al. Progress of terahertz radiometry and international comparison[J]. Chinese Journal of Lasers (邓玉强, 孙青, 于靖, 等. 太赫兹辐射功率计量研究进展与国际比对, 中国激光) 2017, 44(3): 0314001.

孟莹, 邓玉强, 郭树恒, 孙青, 李超辰, 方波, 曾九孙, 蔡晋辉. 基于频率梳的太赫兹辐射功率密度测量[J]. 红外与毫米波学报, 2019, 38(2): 02254. MENG Ying, DENG Yu-Qiang, GUO Shu-Heng, SUN Qing, LI Chao-Chen, FANG Bo, ZENG Jiu-Sun, CAI Jin-Hui. Terahertz spatial radiant power density measurements based on terahertz frequency comb[J]. Journal of Infrared and Millimeter Waves, 2019, 38(2): 02254.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!