红外与激光工程, 2016, 45 (11): 1129001, 网络出版: 2017-01-20  

低轨空间碎片弹道系数及应用

Low earth orbit space debris ballistic coefficients and their applications
作者单位
1 武汉大学 测绘学院, 湖北 武汉 430079
2 地球空间信息技术协同创新中心, 湖北 武汉 430079
摘要
稀疏数据条件下, 弹道系数是影响低轨空间碎片精确轨道确定与预报的关键因子。使用长期累积的TLE(二行根数)跟踪数据, 通过半长轴的大气阻力摄动方程, 将2 000多个轨道近地点高度低于850 km的空间碎片的弹道系数进行估算, 得到这些空间碎片的弹道系数值, 并给出弹道系数的两个应用实例。第一个应用实例关于利用弹道系数进行TLE的数据质量检测。使用质量检测方法剔除质量可疑的TLE后, 对14个面质比较大的空间碎片进行弹道系数的重新估算, 估算误差均显著减小, 其中11个新计算得到的弹道系数与参考值的相对误差小于20%。第二个实例验证弹道系数在所谓的TLE-OD/OP方法中的应用。以GRACE-B卫星为例, 精密轨道预报为参考, 结果表明利用多组TLE的TLE-OD/OP的轨道预报精度显著优于TLE/SGP4的精度。
Abstract
It has been found that ballistic coefficient is a critical parameter in low Earth orbit(LEO) space debris orbit determination(OD) and orbit predication(OP) while using sparse tracking data. Ballistic coefficient of more than 2 000 space debris objects with perigee height below 850 km were estimated using the long-archived two-line elements(TLE) data and the drag perturbation equation of the semi-major axis of the orbit. Two applications of estimated ballistic coefficient values were discussed. In the first experiment, ballistic coefficient of 14 LEO space debris objects with high area to mass ratio(HAMR) were re-computed after TLEs of suspicious quality were removed through a TLE quality examination process in which the ballistic coefficient value was used to estimate a reasonable variation of the mean semi-major axis. Consequently, the errors of all the re-computed ballistic coefficient values were reduced. The newly estimated ballistic coefficient values were tested using a number of space debris objects with external ballistic coefficient values and agreements of about 20% were achieved. In the second experiment, ballistic coefficient of GRACE-B was used as initial value in the so-called TLE-OD/OP method. It is confirmed that the TLE-OD/OP method results have better OP accuracy than standard Simplified General Perturbations-4(SGP4).
参考文献

[1] Bowman B R. True satellite ballistic coefficient determination for HASDM[C]//AIAA/AAS Astrodynamics Specialist Conference, 2002, 1(1): 4887-4892.

[2] Sang J, Bennett J C, Smith C H. Estimation of ballistic coefficients of low altitude debris objects from historical two line elements[J]. Advances in Space Research, 2013, 52(1): 117-124.

[3] Sang J Z, Bennett J C, Smith C. Experimental results of debris orbit predictions using sparse tracking data from Mt. Stromlo[J]. Acta Astronautica, 2014, 102(1): 258-268.

[4] 李振伟, 张涛, 张楠, 等. 暗弱空间目标的高精度定位 [J]. 光学 精密工程, 2015, 23(9): 2627-2634.

    Li Zhenwei, Zhang Tao. Zhang Nan, et al. High precision orientation of faint space objects[J]. Optics and precision Engineering, 2015, 23(9): 2627-2634. (in Chinese)

[5] 李振伟, 张涛, 孙明国. 星空背景下空间目标的快速识别与精密定位 [J]. 光学 精密工程, 2015, 23(2): 589-599.

    Li Zhenwei, Zhang Tao, Sun Mingguo. Fast recongnition and precise orientation of space objects in star background[J]. Optics and Precision Engineering, 2015, 23(2): 589-599. (in Chinese)

[6] 李冬宁, 王成龙, 王丽秋, 等. 地基光度测量方式对比 [J]. 中国光学, 2015, 8(3): 456-463.

    Li Dongning, Wang Chenglong, Wang Liqiu, et al. Comparison of ground-based photometric measurement way[J]. Chinese Optics, 2015, 8(3): 456-463. (in Chinese)

[7] 王卫兵, 王挺峰, 郭劲. 星载光电捕获跟踪瞄准控制技术分析 [J]. 中国光学, 2014, 7(6): 879-888.

    Wang Weibing, Wang Tingfeng, Guo Jing. Analysis for opto-electrical acquisition tracking and pointing control technology on satellite[J]. Chinese Optics, 2014, 7(6): 879-888. (in Chinese)

[8] 郑义军, 谭荣清, 石海霞. 空气中激光烧蚀铝靶冲量耦合系数实验(Ⅱ)[J]. 红外与激光工程, 2015, 44(1): 76-79.

    Zheng Yijun, Tan Rongqing, Shi Haixia. Experimental study (Ⅱ) on impulse coupling coefficient of laser ablating aluminum target in air ambient[J]. Infrared and Laser Engineering, 2015, 44(1): 76-79. (in Chinese)

[9] 刘春波, 赵少博, 韩香娥. 危险空间碎片的天基激光雷达探测 [J]. 红外与激光工程, 2012, 41(5): 1244-1248.

    Liu Chunbo, Zhao Shaobo, Han Xiang′e. Detection of space debris of centimeters in size via spaceborne ladar[J]. Infrared and Laser Engineering, 2012, 41(5): 1244-1248. (in Chinese)

[10] 王虎, 罗建军. 空间碎片多光谱探测相机光学系统设计 [J]. 红外与激光工程, 2014, 43(4): 1188-1193.

    Wang Hu, Luo Jianjun. Optical system design of multi-spectral camera for space debris [J]. Infrared and Laser Engineering, 2014, 43(4): 1188-1193. (in Chinese)

[11] Hedin A E, Fleming E, Manson A H, et al. Empirical wind model for the upper, middle and lower atmosphere[J]. Journal of Atmospheric and Terrestrial Physics, 1996, 58(13): 1421-1447.

[12] Jacchia L. Revised Static Models of the Thermosphere and Exosphere with Empirical Temperature Profiles[M]. Massachusetts: Smithsonian Inatitution Astrophysical Observatory Cambridge, 1971: 80-90.

[13] Hedin A. MSIS-86 thermospheric model [J]. Journal of Geophysical Research: Space Physics(1978-2012), 1986, 92(A5): 4649-4662.

[14] Picone J M, Emmert J T, Lean J L. Thermospheric densities derived from spacecraft orbits: Accurate processing of two-line element sets[J]. Journal of Geophysical Research-Space Physics, 2005, 110(A3): 1-19.

陈俊宇, 李彬, 章品, 杜建丽, 陈立娟, 桑吉章. 低轨空间碎片弹道系数及应用[J]. 红外与激光工程, 2016, 45(11): 1129001. Chen Junyu, Li Bin, Zhang Pin, Du Jianli, Chen Lijuan, Sang Jizhang. Low earth orbit space debris ballistic coefficients and their applications[J]. Infrared and Laser Engineering, 2016, 45(11): 1129001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!