红外与毫米波学报, 2018, 37 (2): 154, 网络出版: 2018-05-29  

归一化阴影植被指数NSVI的构建及其应用效果

Construction and application effects of normalized shaded vegetation index (NSVI)
作者单位
1 福州大学 环境与资源学院,福建 福州 350116
2 空间数据挖掘与信息共享教育部重点实验室,福建 福州 350116
3 福建省水土流失遥感监测评估与灾害防治重点实验室,福建 福州 350116
4 福建省资源环境监测与可持续经营利用重点实验室,福建 三明 365004
摘要
以ALOS AVNIR-2、CBERS-02B CCD、HJ1A-CCD2、Landsat 7 ETM四幅中分辨率遥感影像为试验数据,分析明亮区植被、阴影区植被与水体区的光谱特征与差异,基于近红外波段与归一化植被指数NDVI,构建归一化阴影植被指数NSVI,并评价其光谱差异增强及分类效果.结果表明,NSVI大幅扩大了明亮区植被、阴影区植被、水体区间的光谱相对差异,降低光谱混淆概率;利用NSVI阈值法对四幅试验影像进行分类,总精度均大于97%,总Kappa在0.96以上,且阴影区植被的检测精度均在94%以上,总Kappa系数亦高于0.96.该指数利用地物在近红外波段的辐射差异,解决NDVI只能部分削弱地形影响的问题,扩大地物间的光谱差异,从而提升地物尤其是阴影检测的有效性,且不存在NDVI“易饱和”问题,可为遥感影像阴影去除提供一种新的解决方案.
Abstract
The spectral features and differences in bright vegetation area, shaded vegetation area and water area were investigated by the experimental data from four medium resolution remote sensing images of ALOS AVNIR-2, CBERS-02B CCD, HJ1A-CCD2 and Landsat 7 ETM. Based on the near-infrared band and normalized difference vegetation Index (NDVI), Normalized Shaded Vegetation Index (NSVI) was constructed and the enhancements of spectral differences and classification effect were also evaluated. The results show that NSVI has increased the relative diferences of the spectra in bright vegetation area, shaded vegetation area and water area, and reduced probability of misapplication for the spectral data. The NSVI threshold method was employed to classify the four experimental images. The overall accuracy is over 97%, and the overall Kappa coefficient is above 0.96. The detection accuracy of the shaded vegetation area is over 94% and the Kappa coefficient is also higher than 0.96. By using radiation differences of the near-infrared band between the ground objects, NSVI can solve the problem that NDVI can only partially weaken the topographic effect and enlarge the spectral differences among the ground objects. NSVI enhances the validity of the ground objects especially in the shadow detection and avoids the “saturation” problem of NDVI. It can provide a new solution to remove the shadow in remote sensing images.
参考文献

[1] Kantsingh K, Pal K J, Nigam M. Shadow detection and removal from remote sensing images using NDI and morphological operators[J]. International Journal of Computer Applications, 2012, 42(10): 37-40.

[2] Zhang H, Sun K, Li W. Object-oriented shadow detection and removal from urban high-resolution remote sensing images[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 52(11): 6972-6982.

[3] Anoopa S, Dhanya V, Kizhakkethottam J J. Shadow detection and removal using tri-class based thresholding and shadow matting technique[J]. Procedia Technology,2016, 24: 1358-1365.

[4] Ambrosio G. Shadow detection in colour high-resolution satellite images[J]. International Journal of Remote Sensing, 2008, 29(7):1945-1963.

[5] Chung K L, Lin Y R, Huang Y H. Efficient shadow detection of color aerial images based on successive thresholding scheme[J]. IEEE Transactions on Geoscience & Remote Sensing,2009,47(2): 671-682.

[6] Liasis G, Stavrou S. Satellite images analysis for shadow detection and building height estimation[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2016, 119: 437-450.

[7] Li Y, Gong P, Sasagawa T. Integrated shadow removal based on photogrammetry and image analysis[J]. International Journal of Remote Sensing, 2005, 26(18): 3911-3929.

[8] Yang J, Zhao Z M, Yang J. Shadow removal method for high resolution remote sensing image[J]. Geomatics and Information Science of Wuhan University,2008, 33(1): 17-20.

[9] Yamazaki F, Liu W, Takasaki, M. Characteristics of shadow and removal of its effects for remote sensing imagery[J]. IEEE International Geoscience and Remote Sensing Symposium, IGARSS, 2009, 4:426-429.

[10] Zigh E, Belbachir M F, Kadiri M, et al. New shadow detection and removal approach to improve neural stereo correspondence of dense urban VHR remote sensing images[J]. European Journal of Remote Sensing, 48: 447-463.

[11] Su N, Zhang Y, Tian S, et al. Shadow detection and removal for occluded object information recovery in urban high-resolution panchromatic satellite images[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 9(6):2568-2582.

[12] Yan L, Sasagawa T, Peng G, A system of the shadow detection and shadow removal for high resolution city aerial photo[J]. Xxth ISPRS Congress, 2004, Istanbul, Jul. 12-23.

[13] Li R, Zhang B, Zhang X, et al. Practical method of shadow detection and removal for high spatial resolution remote sensing image[C]. MIPPR 2007: Remote Sensing and GIS Data Processing and Applications; and Innovative Multispectral Technology and Applications, Wuhan, 2007, Nov. 15, p. 67900Q

[14] Zhi P U, Liao Y, Jie B. Shadow detection and removal based on object-oriented method in high spatial resolution remote sense image[J]. Remote Sensing Technology & Application. 2008, 23(6): 735-738.

[15] Li B, Zhang H, Xu F. Water extraction in high resolution remote sensing image based on hierarchical spectrum and shape features[C]. 35th International Symposium on Remote Sensing of Environment (ISRSE35), Beijing, 2014,Apr. 22-26, 17, p. 1-6.

[16] Petus C, Lewis M, White D. Monitoring temporal dynamics of great artesian basin wetland vegetation, Australia, using MODIS NDVI[J]. Ecological Indicators, 2013, 34(11): 41-52.

[17] Qiao T, Zhang H Q, Chen Y F, et al. Extraction of vegetation information based on NDVI segmentation and object-oriented method[J]. Journal of Northwest Forestry University, 2013, 59(4): 328-333.

[18] Fleming S W, Lavenue A M, Aly A H. Practical applications of spectral analysis to hydrologic time series[J]. Hydrological Processes,2002, 16(2): 565-574.

[19] Schaefli B, Maraun D, Holschneider M. What drives high flow events in the Swiss Alps Recent developments in wavelet spectral analysis and their application to hydrology. Advances in Water Resources, 2007, 30(12): 2511-2525.

[20] Aneglini P. Correlation and spectral analysis of two hydrogeological systems in central Italy[J]. Hydrological Sciences Journal, 2009, 42(3): 425-438.

[21] Han X Y, Han L, Chen L W. Extraction of vegetation information using adding windows DTW distance with NDVI time series data[J]. Engineering of Surveying & Mapping,2016, 25(3): 11-16.

[22] Liu Y, Guo Y, Wang J, et al. A preliminary approach on the synchronically ground based measurement of spectral reflectance, NDVI, LAI, and the temperature and moisture of soils[J]. Proceedings of SPIE -The International Society for Optical Engineering, 7123, Beijing, Nov. 24, pp. 712310-1-712310-7.

[23] Prakash K L, Raghavendra K, Somashekar R K. Temporal-scale spectral variability analysis of water quality parameters to realize seasonal behaviour of a tropical river system-River Cauvery, India[J]. Journal of Environmental Biology, 2009, 30: 235-240.

[24] Santin-Janin H, Garel M, Chapuis J L, et al. Assessing the performance of NDVI as a proxy for plant biomass using non-linear models: a case study on the Kerguelen archipelago[J]. Polar Biology, 2009, 32(6): 861-871.

[25] Fang Q M, Zhan Z M. A novel dynamic stretching solution to eliminate saturation effect in NDVI and its application in drought monitoring[J]. Chinese Geographical Science, 2012, 22(6): 683-694.

[26] Gu Y, Wylie B K, Howard D M, et al. NDVI saturation adjustment: a new approach for improving cropland performance estimates in the Greater Platte River Basin, USA[J]. Ecological Indicators, 2013, 30(2): 1-6.

[27] Liu P, Zhang Y, Zhou B, et al. Land use/cover classification using multi-source data with SAM. Journal of Zhejiang University (Engineering Science), 2009, 43(9): 1574-1579.

[28] Babal M, Daniska J, Mikus J, et al. Modelling index of thermophily by means of a multi-source database on Broggerhalvoya Peninsula (Svalbard)[J]. International Journal of Remote Sensing, 2010, 23(21): 4683-4698.

[29] Creech T G, Epps C W, Monello R J, et al. Predicting diet quality and genetic diversity of a desert-adapted ungulate with NDVI[J]. Journal of Arid Environment,2016, 127: 160-170.

[30] Rudorff C M, Galv o L S, Novo E M L M. Reflectance of floodplain waterbodies using EO-1 Hyperion data from high and receding flood periods of the Amazon river. International Journal of Remote Sensing, 2013, 30(10): 2713-2720.

[31] Kanungo D P, Sarkar S. Use of multi-source data sets for land use/land cover classification in a hilly terrain for landslide study[J]. Disaster & Development, 2011, 5(1): 35-51.

[32] Legout C, Poulenard J, Nemery J, et al. Quantifying suspended sediment sources during flood events in headwater catchments using diffuse reflectance spectroscopy[C]. EGU General Assembly, Vienna, 2013, Apr. 7-12, p. 15.

[33] Zhou J H, Zhou Y F, Guo X H, et al. Methods of extracting distribution information of plants at urban darken areas and repairing their brightness[J]. Journal of East China Normal University (Natural Science), 2011, 6: 1-9.

[34] Liu H, Xie T W. Study on shadow detection in high resolution remote sensing image based on PCA and HIS modelJ]. Remote Sensing Technology and Application, 2013, 28(1):78-84.

[35] Legout C, Poulenard J, Nemery J, et al. Quantifying suspended sediment sources during flood events in headwater catchments using diffuse reflectance spectroscopy[C]. EGU General Assembly, Vienna, 2013, Apr. 7-12, p. 15.

[36] Zhou J H, Zhou Y F, Guo X H, et al. Methods of extracting distribution information of plants at urban darken areas and repairing their brightness[J]. Journal of East China Normal University (Natural Science), 2011, 6: 1-9.

[37] Liu H, Xie T W. Study on shadow detection in high resolution remote sensing image based on PCA and HIS modelJ]. Remote Sensing Technology and Application, 2013, 28(1): 78-84.

许章华, 林璐, 王前锋, 黄旭影, 刘健, 余坤勇, 陈崇成. 归一化阴影植被指数NSVI的构建及其应用效果[J]. 红外与毫米波学报, 2018, 37(2): 154. XU Zhang-Hua, LIN Lu, WANG Qian-Feng, HUANG Xu-Ying, LIU Jian, YU Kun-Yong, CHEN Chong-Cheng. Construction and application effects of normalized shaded vegetation index (NSVI)[J]. Journal of Infrared and Millimeter Waves, 2018, 37(2): 154.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!