光子学报, 2019, 48 (3): 0312002, 网络出版: 2019-04-02   

面向红外气体检测的半导体器件温控系统及应用

Temperature Control System of Semiconductor Device and Application for Infrared Gas Detection
作者单位
吉林大学 电子科学与工程学院 集成光电子学国家重点联合实验室吉林大学实验区, 长春 130012
摘要
研制了一种针对半导体器件的温度控制系统, 不仅可用于对内置热电制冷器的半导体器件的温度控制, 同时实现了在宽环境温度范围内对无热电制冷器及热敏电阻的半导体器件的温度控制.系统硬件主要由两部分组成, 第一部分包括主控制器模块、温度采集模块和热电制冷器电流控制模块, 实现对内置热电制冷器的半导体器件的温度控制; 第二部分包括辅控制器模块、温度采集模块、金属氧化物场效应管开关电路模块及附加四级热电制冷器, 实现对无热电制冷器的半导体器件的温度控制.软件部分, 主辅控制器分别实时采集半导体器件的工作温度, 采用积分限幅式数字比例-积分-微分算法, 调整热电制冷器驱动器的电流实现恒定的温度控制.利用本文研制的温度控制系统对内置热电制冷器的半导体激光器的温度控制准确度为±0.01℃, 温度稳定性为0.004 8℃; 在无热电制冷器的半导体光源的温度控制实验中, -18℃、室温、40℃环境下的温控准确度分别为±0.05℃、±0.01℃、±0.02℃.利用研制的温控系统连续5 h测试了1.563 μm激光器的输出光谱, 峰值输出波长稳定; 采用1.653 μm激光器, 分别利用研制的温控系统和商用系统开展了甲烷气体检测实验, 与商用控制器相比, 本文研制的温控仪获得的系统检测下限更低.该系统具有体积小、成本低、便于集成、工作稳定可靠的优点, 在气体检测中有良好的应用前景.
Abstract
A temperature control system for semiconductor devices is developed, which can be used for the temperature control of semiconductor devices with built-in thermoelectric cooler and of those without thermoelectric cooler and thermistor over a wide variation range of ambient temperature. The hardware part of the system is mainly composed of two parts. For the first part, a main controller module, a temperature acquisition module and a thermoelectric cooler current control module realize the temperature control of the semiconductor devices with built-in thermoelectric cooler. For the second part, an auxiliary controller module, a temperature acquisition module, a metal-oxide-semiconductor field-effect transistor switch circuit module and a thermoelectric cooler realize the temperature control of the semiconductor devices without built-in thermoelectric cooler. For the software, the real-time acquisition of the operating temperature of the semiconductor device is realized by the main and auxiliary controllers, and an integral-limited digital proportional-integral-derivative algorithm is used to adjust the current of the thermoelectric cooler driver to achieve a constant temperature control. Using the developed temperature control system, the temperature control accuracy of a semiconductor laser with a built-in TEC is ±0.01℃, and the temperature stability reaches 0.004 8℃. The temperature control experimental results of a semiconductor source without thermoelectric cooler show that the temperature control accuracy are ±0.05℃, ±0.01℃, ±0.02℃ at an ambient temperature of -18℃, room temperature and 40℃, respectively. The output spectrum of a 1.563 μm laser is measured continuously for 5 hours by the developed temperature controller, which generates a stable peak wavelength. With a 1.653 μm laser, methane detection experiments are carried out by using a temperature controller and the developed controller. A lower detection limit is achieved by the developed controller as compared with the results obtained by the commercial one. The system has the advantages of small size, low cost, easy integration, stable and reliable operation, and has good application prospects in infrared gas detection.
参考文献

[1] 陈东, 张伯昆, 胡燮, 等. 基于差频中红外激光的痕量气体高分辨率光谱检测研究[J]. 光子学报, 2012, 41(6): 678-683.

    CHEN Dong, ZHANG Bo-kun, HU Xie, et al. Research on the high resolution trace gas detection based on the difference-frequency mid-infrared spectrometer[J]. Acta Photonica Sinica, 2012, 41(6): 678-683.

[2] SUN R, SUN K, JEFFRIES J B, et al. Multi-species laser absorption sensors for in situ monitoring of syngas composition[J]. Applied Physics B, 2014, 115(1): 9-24.

[3] ZHENG Chuan-tao, YE Wei-lin, LI Guo-lin,et al. Performance enhancement of a mid-infrared CH4 detection sensor by optimizing an asymmetric ellipsoid gas-cell and reducing voltage-fluctuation: Theory,design and experiment[J]. Sensors and Actuators B: Chemical, 2011, 160(1): 389-398.

[4] BAI D Y, GAO X, BO B X. The research of controlling constant temperature for semiconductor laser diodes[J]. Key Engineering Materials, 2013, 552: 398-404.

[5] THOMPSON A. Simultaneous detection of CO2 and CO in engine exhaust using multi-mode absorption spectroscopy, MUMAS [J]. Sensors and Actuators B: Chemical, 2014, 198(198): 309-315.

[6] 庞涛, 王煜, 夏滑, 等. 基于TDLAS技术的全量程激光甲烷传感器[J]. 光子学报, 2016, 45(9): 0912003.

    PANG Tao, WANG Yu, XIA Hua, et al. Full scale methane sensor based on TDLAS technology[J]. Acta Photonica Sinica, 2016, 45(9): 0912003.

[7] 李彬, 何启欣, 付洋, 等. 用于CO气体检测的近红外分布式反馈激光器温控系统[J]. 光学学报, 2014, 34(b12): 250-256.

    LI Bin, HE Qi-xin, FU Yang, et al. Development of near infrared distributed feedback laser temperature control system for CO detection[J]. Acta Optica Sinica, 2014, 34(b12): 250-256.

[8] 陈刚, 张方正, 潘时龙. 一种新型分布反馈半导体激光器的多信号直调性能研究[J]. 光子学报, 2014, 43(2): 0206006.

    CHEN Gang, ZHANG Fang-zheng. PAN Shi-long. Aninvestigation on the multi-signal direct modulation of areconstruction-equivalent-chirp distributed feedback laser diode[J].Acta Photonica Sinica, 2014, 43(2): 0206006.

[9] 党敬民, 付丽, 闫紫微, 等. 基于红外光谱技术的混合气体检测系统概述[J]. 光谱学与光谱分析, 2014, 34(10): 2851-2857.

    DANG Jing-min, FU Li, YAN Zi-hui, et al. A review of mixed gas detection system based on infrared spectroscopic technique[J]. Spectroscopy and Spectral Analysis, 2014, 34(10): 2851-2857.

[10] HE Qi-xin, ZHENG Chuan-tao. A near-infrared acetylene detection system based on a 1.534 μm tunable diode laser and a miniature gas chamber[J]. Infrared Physics & Technology, 2016, 75: 93-99.

[11] 黄渐强, 翟冰, 何启欣, 等. 用于气体检测的近红外半导体激光器温控系统[J]. 光子学报, 2014, 43(6): 0614003.

    HUANG Jian-qiang, ZHAI Bing, He Qi-xin, et al. A temperature controller for near-infrared semiconductor laser used in gas detection[J]. Acta Photonica Sinica, 2014, 43(6): 0614003.

[12] 王琢, 闵昆龙, 白雪冰, 蔡洪刚. 气体传感器中半导体激光器的温度控制[J]. 传感器与微系统, 2013, 32(6): 43-46.

    WANG Zhuo, MIN Kun-long, BAI Xue-bing, et al. Temperature control of semiconductor laser in gas sensor[J]. Transducer and Microsystem Technologies, 2013, 32(6): 43-46.

[13] 陈晨, 党敬民, 黄渐强, 等. 高稳定强稳健性DFB 激光器温度控制系统[J]. 吉林大学学报(工学版), 2013, 43(4): 1004-1010.

    CHEN Chen, DANG Jing-min, HUANG Jian-qiang, et al. DFB laser temperature control system with high stability and strong robustness[J]. Journal of Jilin University(Engineering and Technology Edition), 2013, 43(4): 1004-1010.

[14] 李江澜, 石云波, 赵鹏飞, 等. TEC的高准确度半导体激光器温控设计[J]. 红外与激光工程, 2014, 43(6): 1745-1749.

    LI Jiang-lan, SHI Yun-bo, ZHAO Peng-fei, et al. High precision thermostat system with TEC for laser diode[J]. Infrared and Laser Engineering, 2014, 43(6): 1745-1749.

[15] 夏金宝, 刘兆军, 张飒飒, 等. 快速半导体激光器温度控制系统设计[J]. 红外与激光工程, 2015, 44(7): 1991-1995.

    XIA Jin-bao, LIU Zhao-jun, ZHANG Sa-sa, et al. Design of semiconductor laser quick temperature control system[J].Infrared and Laser Engineering, 2015, 44(7): 1991-1995.

[16] 何启欣, 刘慧芳, 李彬, 等. 一种多通道半导体激光器温控系统[J]. 光学学报, 2017, 37(11): 1114002.

    HE Qi-xin, LIU Hui-fang, LI Bin, et al. A multi-channel semiconductor laser temperature control system[J]. Acta Optica Sinica, 2017, 37(11): 1114002.

闫万红, 周言文, 余迪, 刘志伟, 宋芳, 郑传涛, 王一丁. 面向红外气体检测的半导体器件温控系统及应用[J]. 光子学报, 2019, 48(3): 0312002. YAN Wan-hong, ZHOU Yan-wen, YU Di, LIU Zhi-wei, SONG Fang, ZHENG Chuan-tao, WANG Yi-ding. Temperature Control System of Semiconductor Device and Application for Infrared Gas Detection[J]. ACTA PHOTONICA SINICA, 2019, 48(3): 0312002.

本文已被 4 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!