Frontiers of Optoelectronics, 2018, 11 (1): 0137, 网络出版: 2018-08-04   

Development of Bi/Er co-doped optical fibers for ultra-broadband photonic applications

Development of Bi/Er co-doped optical fibers for ultra-broadband photonic applications
作者单位
1 Photonics & Optical Communications, School of Electrical Engineering, University of New South Wales, Sydney 2052, NSW, Australia
2 Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200072, China
3 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
4 Key Lab of In-fiber Integrated Optics, Ministry of Education, Harbin Engineering University, Harbin 150001, China
5 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
摘要
Abstract
Targeting the huge unused bandwidth (BW) of modern telecommunication networks, Bi/Er co-doped silica optical fibers (BEDFs) have been proposed and developed for ultra-broadband, high-gain optical amplifiers covering the 1150–1700 nm wavelength range. Ultrabroadband luminescence has been demonstrated in both BEDFs and bismuth/erbium/ytterbium co-doped optical fibers (BEYDFs) fabricated with the modified chemical vapor deposition (MCVD) and in situ doping techniques. Several novel and sophisticated techniques have been developed for the fabrication and characterization of the new active fibers. For controlling the performance of the active fibers, post-treatment processes using high temperature, γ-radiation, and laser light have been introduced. Although many fundamental scientific and technological issues and challenges still remain, several photonic applications, such as fiber sensing, fiber gratings, fiber amplification, fiber lasers, etc., have already been demonstrated.
参考文献

[1] Richardson D J, Fini J M, Nelson L E. Space-division multiplexing in optical fibres. Nature Photonics, 2013, 7(5): 354–362

[2] Dianov E M. Amplification in extended transmission bands using bismuth-doped optical fibers. Journal of Lightwave Technology, 2013, 31(4): 681–688

[3] Won R. View from... communication networks beyond the capacity crunch: is it crunch time? Nature Photonics, 2015, 9(7): 424–426

[4] https://en.wikipedia.org/wiki/Optical_amplifier

[5] Fujimoto Y, Nakatsuka M. Infrared luminescence from bismuthdoped silica glass. Japanese Journal of Applied Physics, 2001, 40 (Part 2, No. 3B): L279–L281

[6] Ohkura T, Fujimoto Y, Nakatsuka M, Young-Seok S. Local structures of bismuth ion in bismuth-doped silica glasses analyzed using Bi LIII X-ray absorption fine structure. Journal of the American Ceramic Society, 2007, 90(11): 3596–3600

[7] Fujimoto Y. Local structure of the infrared bismuth luminescent center in bismuth-doped silica glass. Journal of the American Ceramic Society, 2010, 93(2): 581–589

[8] Sokolov V O, Plotnichenko V G, Koltashev V V, Dianov E M. Centres of broadband near-IR luminescence in bismuth-doped glasses. Journal of Physics D, Applied Physics, 2009, 42(9): 095410

[9] Meng X G, Qiu J R, Peng M Y, Chen D P, Zhao Q Z, Jiang X W, Zhu C S. Near infrared broadband emission of bismuth-doped aluminophosphate glass. Optics Express, 2005, 13(5): 1628–1634

[10] Sun H T, Zhou J, Qiu J. Recent advances in bismuth activated photonic materials. Progress in Materials Science, 2014, 64: 1–72

[11] Murata K, Fujimoto Y, Kanabe T, Fujita H, Nakatsuka M. Bi-doped SiO2 as a new laser material for an intense laser. Fusion Engineering and Design, 1999, 44(1–4): 437–439

[12] Dianov E M. Bismuth-doped optical fibres: a new breakthrough in near-IR lasing media. Quantum Electronics, 2012, 42(9): 754–761

[13] Riumkin K E, Melkumov M A, Bufetov I A, Shubin A V, Firstov S V, Khopin V F, Guryanov A N, Dianov E M. Superfluorescent 1.44 mm bismuth-doped fiber source. Optics Letters, 2012, 37(23): 4817– 4819

[14] Dvoyrin V V, Mashinsky V M, Dianov E M, Umnikov A A, Yashkov M V, Guranov A N. Absorption, fluorescence and optical amplification in MCVD bismuth-doped silica glass optical fibres. In: Proceedings of ECOC, 2005, 4: 949–950

[15] Dianov E M. Nature of Bi-related near IR active centers in glasses: state of the art and first reliable results. Laser Physics Letters, 2015, 12(9): 095106

[16] Dianov E M. Fiber for fiber lasers: bismuth-doped optical fibers: advances in an active laser media. Laser Focus World, 2015, 51(9): 16

[17] Kuwada Y, Fujimoto Y, Nakatsuka M. Ultrawideband light emission from bismuth and erbium doped silica. Japanese Journal of Applied Physics, 2007, 46(4A): 1531–1532

[18] Peng M, Zhang N, Wondraczek L, Qiu J, Yang Z, Zhang Q. Ultrabroad NIR luminescence and energy transfer in Bi and Er/Bi co-doped germanate glasses. Optics Express, 2011, 19(21): 20799– 20807

[19] Minh Hau T, Yu X, Zhou D, Song Z, Yang Z, Wang R, Qiu J. Super broadband near-infrared emission and energy transfer in Bi–Er codoped lanthanum aluminosilicate glasses. Optical Materials, 2013, 35(3): 487–490

[20] Minh Hau T, Wang R, Yu X, Zhou D, Song Z, Yang Z, He X, Qiu J. Near-infrared broadband luminescence and energy transfer in Bi– Tm–Er co-doped lanthanum aluminosilicate glasses. Journal of Physics and Chemistry of Solids, 2012, 73(9): 1182–1186

[21] Luo Y, Wen J, Zhang J, Canning J, Peng G D. Bismuth and erbium codoped optical fiber with ultrabroadband luminescence across O-, E-, S-, C-, and L-bands. Optics Letters, 2012, 37(16): 3447–3449

[22] Sathi Z M, Zhang J, Luo Y, Canning J, Peng G D. Improving broadband emission within Bi/Er doped silicate fibres with Yb codoping. Optical Materials Express, 2015, 5(10): 2096–2105

[23] Wen J, Wang T, Pang F, Zeng X, Chen Z, Peng G D. Photoluminescence characteristics of Bi(m+)-doped silica optical fiber: structural model and theoretical analysis. Japanese Journal of Applied Physics, 2013, 52(12R): 122501

[24] Corbett J D. Homopolyatomic ions of the post-transition elements— synthesis, structure and bonding. In: Lippard S J, ed. Progress in Inorganic Chemistry. Hoboken, NJ: JohnWiley & Sons, Inc., 1976, vol 21

[25] Khonthon S, Morimoto S, Arai Y, Ohishi Y. Redox equilibrium and NIR luminescence of Bi2O3-containing glasses. Optical Materials, 2009, 31(8): 1262–1268

[26] Sun H T, Sakka Y, Gao H, Miwa Y, Fujii M, Shirahata N, Bai Z, Li J G. Ultrabroad near-infrared photoluminescence from Bi5(AlCl4)3 crystal. Journal of Materials Chemistry, 2011, 21(12): 4060–4063

[27] Sun H T, Sakka Y, Shirahata N, Gao H, Yonezawa T. Experimental and theoretical studies of photoluminescence from Bi8 2+ and Bi5 3+ stabilized by [AlCl4]- in molecular crystals. Journal of Materials Chemistry, 2012, 22(25): 12837–12841

[28] Sun H T, Yonezawa T, Gillett-Kunnath MM, Sakka Y, Shirahata N, Rong Gui S C, Fujii M, Sevov S C. Ultra-broad near-infrared photoluminescence from crystalline (K-crypt)2Bi2 containing [Bi2]2– dimers. Journal of Materials Chemistry, 2012, 22(38): 20175–20178

[29] Sun H T, Matsushita Y, Sakka Y, Shirahata N, Tanaka M, Katsuya Y, Gao H, Kobayashi K. Synchrotron X-ray, photoluminescence,and quantum chemistry studies of bismuth-embedded dehydrated zeolite Y. Journal of the American Chemical Society, 2012, 134(6): 2918–2921

[30] Peng M, Dong G, Wondraczek L, Zhang L, Zhang N, Qiu J. Discussion on the origin of NIR emission from Bi-doped materials. Journal of Non-Crystalline Solids, 2011, 357(11-13): 2241–2245

[31] Dianov EM, Firstov S V, Melkumov M. Bismuth-doped fiber lasers covering the spectral region 1150–1775 nm. In: Proceedings of Frontiers in Optics 2015, Optical Society of America, San Jose, California, 2015, LTu2H.1

[32] Dianov E M, Firstov S V, Melkumov M A. Bismuth-doped optical fibers: advances and new developments. In: Proceedings of Workshop on Specialty Optical Fibers and Their Applications, Optical Society of America, Hong Kong, 2015, WT1A.4

[33] https://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id = 1504

[34] https://www.thorlabs.de/newgrouppage9.cfm?objectgroup_id = 336

[35] Bufetov I A, Melkumov M A, Firstov S V, Riumkin K E, Shubin A V, Khopin V F, Guryanov A N, Dianov EM. Bi-doped optical fibers and fiber lasers. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 0903815

[36] Zhang J, Luo Y, Sathi Z M, Azadpeyma N, Peng G D. Test of spectral emission and absorption characteristics of active optical fibers by direct side pumping. Optics Express, 2012, 20(18): 20623– 20628

[37] Zhang J, Sathi Z M, Luo Y, Canning J, Peng G D. Toward an ultrabroadband emission source based on the bismuth and erbium codoped optical fiber and a single 830 nm laser diode pump. Optics Express, 2013, 21(6): 7786–7792

[38] Fukuchi Y, Maeda J. Characteristics of rational harmonic modelocked shortcavity fiber ring laser using a bismuthoxidebased erbiumdoped fiber and a bismuthoxidebased highly nonlinear fiber. Optics Express, 2011, 19(23): 22502–22509

[39] http://www2.eet.unsw.edu.au/photonics/NFF.html

[40] Webb A S, Boyland A J, Standish R J, Yoo S, Sahu J K, Payne D N. MCVD in-situ solution doping process for the fabrication of complex design large core rare-earth doped fibers. Journal of Non- Crystalline Solids, 2010, 356(18-19): 848–851

[41] Nagel S R, Macchesney J B, Walker K L. An overview of the modified chemical vapor deposition (MCVD) process and performance. IEEE Journal of Quantum Electronics, 1982, 18(4): 459–476

[42] Dianov E M. Amplification in extended transmission bands. In: Proceedings of OFC 2012 OSA, Los Angeles, USA, 2012

[43] Razdobreev I, Bigot L. On the multiplicity of bismuth active centres in germano-aluminosilicate preform. Optical Materials, 2011, 33(6): 973–977

[44] Peng G D, Luo Y, Zhang J, Wen J, Yan B, Canning J. Recent development of new active optical fibres for broadband photonic applications. In: Proceedings of 4th International Conference on Photonics, IEEE, 2013, 5–9

[45] Luo Y, Zhang J, Zareanborji A, Wen J, Canning J, Peng G D. Developing Bi/Er/Al codoped optical fibre with high Bi concentration for ultrabroadband emission. In: Proceedings of 37th Australian Conference on Optical Fibre Technology, Engineering Australian, Sydney, 2012, 117

[46] Sathi Z, Yang H, Luo Y, Zhang J, Peng G D. Ytterbium related effects in bismuth/erbium/ytterbium co-doped germanosilicate fibres. In: Proceedings of OptoElectronics and Communications Conference and Australian Conference on Optical Fibre Technology (OECC/ACOFT 2014), IEEE, Melbourne, Australia, 2014, WEPS2–65

[47] Wen J,Wang J, Dong Y, Chen N, Luo Y, Peng G D, Pang F, Chen Z, Wang T. Photoluminescence properties of Bi/Al-codoped silica optical fiberbased on atomic layer deposition method. Applied Surface Science, 2015, 349: 287–291

[48] Ni J, Peng G D,Wang C, Luo Y, Xiao G,Wei S, Liu H, Liu T. Study on pump optimizing for Bi/Er co-doped optical fiber. Measurement, 2016, 79: 160–163

[49] Zareanborji A, Yang H Y, Sathi Z, Luo Y H, Town G, Peng G D. Time-resolved fluorescence measurement based on spectroscopy and DSP techniques for Bi/Er codoped fibre characterization. In: Proceedings of OptoElectronics and Communications Conference and Australian Conference on Optical Fibre Technology (OECC/ ACOFT 2014), IEEE, Melbourne, Australia, 2014, TU6C–5

[50] Zareanborji A, Yang H Y, Town G, Luo Y H, Peng G D. Simple and accurate fluorescence lifetime measurement scheme using traditional time-domain spectroscopy and modern digital signal processing. Journal of Lightwave Technology, 2016, 34(21): 5033–5043

[51] Firstov S V, Khopin V F, Bufetov I A, Firstova E G, Guryanov A N, Dianov E M. Combined excitation-emission spectroscopy of bismuth active centers in optical fibers. Optics Express, 2011, 19 (20): 19551–19561

[52] Nykolak G, Becker P C, Shmulovich J,Wong Y H, DiGiovanni D J, Bruce A J. Concentration-dependent 4I13/2 lifetimes in Er3+-doped fibers and Er3+-doped planar waveguides. IEEE Photonics Technology Letters, 1993, 5(9): 1014–1016

[53] Zhou Y, Gai N, Wang J, Chen F, Yang G. Effect of Ce3+(Eu3+) codoping on the spectroscopic properties of Er3+ in bismuthgermanate glass. Optical Materials, 2009, 31(11): 1595–1599

[54] Digonnet M J F. Rare-earth-doped fiber lasers and amplifiers. 2nd, devised and expanded. New York: CRC Press, 2002, Chap. 2

[55] Bufetov I A, Dianov E M. Bi-doped fiber lasers. Laser Physics Letters, 2009, 6(7): 487–504

[56] Fujimoto Y, Nakatsuka M. 27Al NMR structural study on aluminum coordination state in bismuth doped silica glass. Journal of Non- Crystalline Solids, 2006, 352(21–22): 2254–2258

[57] Riumkin K E, Melkumov M A, Varfolomeev I A, Shubin A V, Bufetov I A, Firstov S V, Khopin V F, Umnikov A A, Guryanov A N, Dianov E M. Excited-state absorption in various bismuth-doped fibers. Optics Letters, 2014, 39(8): 2503–2506

[58] Sathi Z M, Zhang J, Luo Y, Canning J, Peng G D. Spectral properties and role of aluminiumrelated bismuth active centre (BAC-Al) in bismuth and erbium co-doped fibres. Optical Materials Express, 2015, 5(5): 1195–1209

[59] Zareanborji A, Luo Y, Peng G D. Characterization and assessment of multiple bismuth active centres in Bi/Er doped fiber. In: Proceedings of 2nd International Conference on Opto-Electronics and Applied Optics (IEM OPTRONIX), 2015, 1–5

[60] Yan B, Luo Y, Zareanborji A, Xiao G, Peng G D, Wen J. Performance comparison of bismuth/erbium co-doped optical fibre (BEDF) by 830 nm and 980 nm pumping. Journal of Optics, 2016, 18(10): 105705

[61] Canning J, Liu W, Cook K. Annealing and regeneration in optical fibres. In: Proceedings of Asia Communications and Photonics Conference 2015, Optical Society of America, Hong Kong, 2015, AM3C.2

[62] Wei S, Luo Y, Ding M, Cai F, Zhao Q, Peng G D. Annealing effects on bismuth active centers in Bi/Er co-doped fiber. In: Proceedings of Conference on Lasers and Electro-Optics, Optical Society of America, San Jose, California, 2016, JTh2A.75

[63] Yan B, Luo Y, Sporea D, Mihai L, Negut D, Sang X,Wen J, Xiao G, Peng G. Gamma radiation-induced formation of bismuth related active centre in Bi/Er/Yb co-doped fibre. In: Proceedings of Asia Communications and Photonics Conference 2015, Optical Society of America, Hong Kong, 2015, ASu2A.56

[64] Wen J, Liu W, Dong Y, Luo Y, Peng G D, Chen N, Pang F, Chen Z, Wang T. Radiation-induced photoluminescence enhancement of Bi/ Al-codoped silica optical fibers via atomic layer deposition. Optics Express, 2015, 23(22): 29004–29013

[65] Sporea D, Mihai L, Negu? D, Luo Y, Yan B, Ding M,Wei S, Peng G D. r irradiation induced effects on bismuth active centres and related photoluminescence properties of Bi/Er co-doped optical fibres. Scientific Reports, 2016, 6(1): 29827

[66] Cook K, Shao L Y, Canning J, Wang T, Luo Y, Peng G D. Bragg gratings in few-mode Er/Al//Bi/P co-doped germanosilicate ringcore fibre. In: Proceedings of 22nd International Conference on Optical Fiber Sensors, SPIE, Beijing, China, 2012

[67] Qi H, Luo Y, Yang H, Zhang J, Canning J, Peng G D. Photosensitivity, phase shifted grating and DFB fibre laser in bismuth/erbium co-doped germanosilicate optical fibre. In: Proceedings of 19th OptoElectronics and Communications Conference, OECC 2014 and the 39th Australian Conference on Optical Fibre Technology, ACOFT 2014, IEEE Computer Society, Melbourne, VIC, Australia, 2014, 495–497

[68] Ding M,Wei S, Luo Y, Peng G D. Reversible photo-bleaching effect in Bi/Er co-doped optical fiber. In: Proceedings of Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), Optical Society of America, Sydney, 2016, ATh2C.3

[69] Xu B, Zhou S, Guan M, Tan D, Teng Y, Zhou J, Ma Z, Hong Z, Qiu J. Unusual luminescence quenching and reviving behavior of Bidoped germanate glasses. Optics Express, 2011, 19(23): 23436– 23443

[70] Denker B I, Galagan B I, Musalitin A M, Shulman I L, Sverchkov S E, Dianov EM. Alternative ways to form IR luminescence centers in Bi-doped glass. Laser Physics, 2011, 21(4): 746–749

[71] Kononenko V, Pashinin V, Galagan B, Sverchkov S, Denker B, Konov V, Dianov E M. Activation of color centers in bismuth glass by femtosecond laser radiation. Laser Physics, 2011, 21(9): 1585– 1592

[72] Xu J, Zhao H, Su L, Yu J, Zhou P, Tang H, Zheng L, Li H. Study on the effect of heat-annealing and irradiation on spectroscopic properties of Bi:α-BaB2O4 single crystal. Optics Express, 2010, 18(4): 3385–3391

[73] Wei S, Luo Y, Ding M, Cai F, Xiao G, Fan D, Zhao Q, Peng G D. Thermal effect on attenuation and luminescence of Bi/Er co-doped fiber. IEEE Photonics Technology Letters, 2017, 29(1): 43–46

[74] Yan B, Luo Y, Sporea D, Mihai L, Negu? D, Ding M, Wang C, Wen J, Sang X, Peng G D. Enhancing gamma radiation effect in Bi/Er doped optical fibre by co-doping Yb. In: Proceedings of Asia Communications and Photonics Conference 2016, Optical Society of America, Wuhan, China, 2016

[75] Ban C, Limberger H G, Bulatov I L, Dvoyrin V V, Mashinsky V M, Dianov E M. Infrared luminescence enhacement by UV-irradiation of H2-loaded Bi-Al-doped fiber. In: Proceedings of ECOC, 2009

[76] Violakis G, Limberger H G, Mashinsky V M, Dianov E M. Dose dependence of luminescence increase in H2-loaded Bi-Al co-doped optical fibers by cw 244-nm and pulsed 193-nm laser irradiation. In: Proceedings of OFC, Optical Society of America, 2013

[77] Song D, Zhang J, Fang S, Sun W, Sathi Z M, Luo Y, Peng G D. Bismuth and erbium co-doped optical fiber for a white light fiber source. Optics and Photonics Journal, 2013, 3(02): 175–178

[78] Yan B, Luo Y, Zareanborji A, Zhang J, Canning J, Peng G D. 1350- 1470 nm optical amplification with bismuth/erbium co-doped fibre. In: Proceedings of Australia and New Zealand Conference on Optics and Photonics (ANZCOP) Conference 2013, Engineering Australia, Perth, Australia, 2013

[79] Firstov S V, Khopin V F, Riumkin K E, Alyshev S V, Melkumov M A, Guryanov A N, Dianov E M. Bi/Er co-doped fibers as an active medium for optical amplifiers for the C-, L- and U- telecommunication bands. In: Proceedings of ECOC, 2016,1–3

, , , , , . Development of Bi/Er co-doped optical fibers for ultra-broadband photonic applications[J]. Frontiers of Optoelectronics, 2018, 11(1): 0137. Yanhua LUO, Binbin YAN, Jianzhong ZHANG, Jianxiang WEN, Jun HE, Gang-Ding PENG. Development of Bi/Er co-doped optical fibers for ultra-broadband photonic applications[J]. Frontiers of Optoelectronics, 2018, 11(1): 0137.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!