强激光与粒子束, 2017, 29 (8): 086001, 网络出版: 2017-06-30  

基于大规模并行计算的三维多群中子扩散方程有限差分方法

Finite difference method for 3D multi-group neutron diffusion equation based on large-scale parallel computation
作者单位
中国核动力研究设计院 核反应堆系统设计技术重点实验室, 成都 610041
摘要
三维多群中子扩散方程的精确、高效求解是核动力堆芯设计及燃料管理的基础。应用有限差分方法求解该方程具有简便、精确、成熟的优点; 然而,该方法的计算量和存储量均较大,极大地限制了它的计算规模和应用范围。本文基于大规模并行计算,研究三维多群中子扩散方程有限差分方法:采用中心有限差分格式离散中子扩散方程; 基于MPI并行编程模型,采用空间区域分解的方式实现大规模并行计算; 采用多群多区域耦合PGMRES算法进行并行加速。在集群服务器上开发了ParaFiDi程序,并采用IAEA3D,PHWR等多个基准题对该程序进行验证。数值结果表明,ParaFiDi程序具有较高的计算精度和计算效率。
Abstract
Nuclear design and fuel management of submarine reactors and NPP reactors are based on solving 3D multi-group neutron diffusion equation accurately and efficiently. One of the methods for this equation is finite difference method (FDM), which is simple, accurate and mature. However, the computation burden of FDM is huge and the memory requirement is high, thus limiting FDM’s scale and application scope. In this paper, FDM for 3D multi-group neutron diffusion equation based on large-scale parallel computation is researched. Mesh-centered FDM is used to discrete the neutron diffusion equation. Large-scale parallel computation is realized by domain decomposition based on MPI, and it’s accelerated with multi-group multi-domain coupled PGMRES algorithm. ParaFiDi code is developed on high performance cluster and verified by several benchmarks such as IAEA3D and PHWR. Numerical results demonstrate that ParaFiDi code could obtain good efficiency and accuracy.
参考文献

[1] Smith K S. Assembly homogenization techniques for light water reactor analysis[J].Progress in Nuclear Energy, 1986, 17(3): 303-335.

[2] 谢仲生. 压水堆核电厂堆芯燃料管理计算及优化[M].北京: 原子能出版社, 2001.(Xie Zhongsheng. Fuel management computation and optimization of pressurized water reactors. Beijing: Atomic Energy Press, 2001)

[3] 柴晓明, 马永强, 王育威, 等. 堆芯中子学程序系统SARCS-4.0的开发及初步验证[J].核动力工程, 2013(s1): 24-26.(Chai Xiaoming, Ma Yongqiang, Wang Yuwei, et al. Development and V&V of advanced neutronics code system SARCS-4.0. Nuclear Power Engineering, 2013(s1): 24-26)

[4] Lawrence R D. Progress in nodal methods for the solution of the neutron diffusion and transport equations[J].Progress in Nuclear Energy, 1986, 17(3): 271-301.

[5] 田刚, 卢风顺. MPI/OPENMP+CUDA高性能计算环境的配置及应用[J].硅谷, 2011(17): 118-119.(Tian Gang, Lu Fengshun. Configuration and application of high performance computers based on MPI/OPENMP+CUDA. Silicon Valley, 2011(17): 118-119)

[6] 张武生, 薛巍, 李建江. MPI并行程序设计实例教程[M].北京: 清华大学出版社, 2009.(Zhang Wusheng, Xue Wei, Li Jianjiang. Parallel programming based on MPI. Beijing: Tsinghua University Press, 2009)

[7] Balay S, Brown J, Buschelman K, et al. PETSc users manual[R].ANL-95/11 Rev 3.7, Argonne National Laboratory, 2013.

[8] Saad Y. Iterative methods for sparse linear systems[M].Boston: PWS Publishing Company, 1996.

[9] Center A C. Benchmark Problem Book_IAEA, ANL-7416[R].Computational Benchmark Problems Committee of the Mathematics and Computation Division of the American Nuclear Society, 1977.

[10] Modak R S, Jain V K. Sub-space iteration scheme for the evaluation of lambda-modes of finite-differenced multi-group neutron diffusion equations[J].Annals of Nuclear Energy, 1996, 23(3): 229-237.

[11] Bandini. B R. A three-dimensional transient neutronics routine for the TRAC-PF1 reactor thermal hydraulic computer code[D].Philadelphia: Pennsylvania State University, 1990.

吴文斌, 于颖锐, 向宏志, 甯忠豪, 李庆. 基于大规模并行计算的三维多群中子扩散方程有限差分方法[J]. 强激光与粒子束, 2017, 29(8): 086001. Wu Wenbin, Yu Yingrui, Xiang Hongzhi, Ning Zhonghao, Li Qing. Finite difference method for 3D multi-group neutron diffusion equation based on large-scale parallel computation[J]. High Power Laser and Particle Beams, 2017, 29(8): 086001.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!