半导体光电, 2018, 39 (3): 332, 网络出版: 2018-06-29  

有机电荷产生层对叠层磷光OLED器件性能的影响

Effect of Organic Charge Generation Layer on Optoelectronic Performance of Tandem Phosphorescent OLED
作者单位
重庆邮电大学 光电工程学院, 重庆 400065
摘要
采用C60/pentanece作为非掺杂电荷产生层, 并在其两边各插入Al和MoO3 薄层作为C60和pentanece的电子注入层和空穴注入层, 在此基础上制备了结构为ITO/NPB/mCP∶8wt% Ir(ppy)3/TPBi/Al/C60/pentanece/MoO3/NPB/mCP∶8wt% Ir(ppy)3/TPBi/Cs2CO3/Al的双发光单元叠层绿色磷光有机发光器件(OLED)。实验表明, 增加Al和MoO3电荷注入层, 可有效改善有机电荷产生层的电荷注入能力, 提高叠层OLED器件的发光亮度和电流效率。叠层器件的启亮电压明显低于单个器件的1/2, 但电流效率是单层器件的两倍以上。当Al/C60/pentanece/MoO3的厚度分别是3、15、25和1nm时, 叠层OLED器件具有最佳的光电性能, 其最大亮度和最大电流效率分别是7920.0cd/m2和16.4cd/A。
Abstract
In this report, C60/pentacene was applied as the nondoped charge generation layer (CGL) to achieve excellent performance of TOLEDs with using Al and MoO3 layer as the electron and hole injection layers, respectively. Green phosphorescence TOLEDs with the structure of ITO/NPB/mCP∶Ir(ppy)3/TPBi/Al/C60/pentanece/MoO3/NPB/mCP∶Ir(ppy)3/TPBi/Cs2CO3/Al were fabricated. Experimental results show that inserting Al and MoO3 layer can effectively increase the charge injection capacity of organic CGL, and improve the luminance and current efficiency of TOLEDs. The turnon voltage of TOLEDs is much lower than that of singleunit device, but the current efficiency is more than 2 times as that of the singleunit device. TOLEDs can exhibit excellent photoelectric performance when the thickness of Al/C60/pentanece/MoO3 is 3, 15, 25 or 1nm. The maximum luminance and current efficiency are 7920.0cd/m2 and 16.4cd/A, respectively.
参考文献

[1] Tang C W, VanSlyke S A. Organic electroluminescent diodes[J]. Appl. Phys. Lett., 1987, 51(12): 913915.

[2] Geffroy B, Le Roy P, Prat C. Organic lightemitting diode (OLED) technology: materials, devices and display technologies[J]. Polymer International, 2006, 55(6): 572582.

[3] Wang Q, Ma D. Management of charges and excitons for highperformance white organic lightemitting diodes[J]. Chem. Society Rev., 2010, 39(7): 23872398.

[4] McCarthy M A, Liu B, Donoghue E P, et al. Lowvoltage, lowpower, organic lightemitting transistors for active matrix displays[J]. Science, 2011, 332(6029): 570573.

[5] Reineke S, Thomschke M, Lüssem B, et al. White organic lightemitting diodes: Status and perspective[J]. Rev. of Modern Phys., 2013, 85(3): 12451293.

[6] Kido J, Matsumoto T, Nakada T, et al. 27.1: Invited paper: High efficiency organic EL devices having charge generation layers[J]. Sid Symposium Digest of Technical Papers, 2003, 34(1): 964965.

[7] Kanno H, Holmes R J, Sun Y, et al. White stacked electrophosphorescent organic lightemitting devices employing MoO3 as a chargegeneration layer[J]. Adv. Mater., 2006, 18(3): 339342.

[8] Bao Q Y, Yang J P, Li Y Q, et al. Electronic structures of MoO3based charge generation layer for tandem organic lightemitting diodes[J]. Appl. Phys. Lett., 2010, 97(6): 0633030633033 .

[9] Meyer J, Krger M, Hamwi S, et al. Charge generation layers comprising transition metaloxide/organic interfaces: Electronic structure and charge generation mechanism[J]. Appl. Phys. Lett., 2010, 96(19): 1933021933023.

[10] Chen Y, Chen J, Ma D, et al. High power efficiency tandem organic lightemitting diodes based on bulk heterojunction organic bipolar charge generation layer[J]. Appl. Phys. Lett., 2011, 98(24): 2433092433093.

[11] Chen Y, Chen J, Ma D, et al. Tandem white phosphorescent organic lightemitting diodes based on interfacemodified C60/pentacene organic heterojunction as charge generation layer[J]. Appl. Phys. Lett., 2011, 99(10): 1033041033043.

[12] Gao X D, Zhou J, Xie Z T, et al. Mechanism of charge generation in ptype doped layer in the connection unit of tandemtype organic lightemitting devices[J]. Appl. Phys. Lett., 2008, 93(8): 0833040833043.

[13] Jin T C, Kim D H, Koh E I, et al. Efficiency enhancement of tandem organic lightemitting devices by a combined charge generation layer and organic ntype bis(ethylenedithio)tetrathiafulvalenedoped electron transport layer[J]. Thin Solid Films, 2014, 570: 6367.

[14] Yang J, Suman C K, Kim J, et al. Fabrication of transparent Al∶LiF composite/MoO3 interconnecting layers for tandem white organic light emitting devices[J]. J. Nanosci. Nanotechnol., 2014, 14(8): 58985902.

[15] Wu Y, Sun Y, Qin H, et al. Buffermodified n/ptype and p/ntype planar organic heterojunctions as charge generation layers for high performance tandem organic lightemitting diodes[J]. Synthetic Metals, 2017, 228: 4551.

[16] Wu Y, Sun Y, Qin H, et al. Highperformance tandem organic lightemitting diodes based on a buffermodified p/ntype planar organic heterojunction as charge generation layer[J]. Appl. Phys. A Mater. Science & Proc., 2017, 123(4): 234240.

[17] Tsutsui T, Terai M. Electric fieldassisted bipolar charge spouting in organic thinfilm diodes[J]. Appl. Phys. Lett., 2004, 84(3): 440442.

[18] Chen C W, Lu Y J, Wu C C, et al. Effective connecting architecture for tandem organic lightemitting devices[J]. Appl. Phys. Lett., 2005, 87(24): 2411212411213.

[19] Kanno H, Holmes R J, Sun Y, et al. White stacked electrophosphorescent organic lightemitting devices employing MoO3 as a chargegeneration layer[J]. Adv. Mater., 2006, 18(3): 339342.

[20] Chen P, Xue Q, Xie W, et al. Colorstable and efficient stacked white organic lightemitting devices comprising blue fluorescent and orange phosphorescent emissive units[J]. Appl. Phys. Lett., 2008, 93(15): 1535081535083.

[21] Chang C C, Chen J F, Hwang S W, et al. Highly efficient white organic electroluminescent devices based on tandem architecture[J]. Appl. Phys. Lett., 2005, 87(25): 2535012535013.

[22] Zhang H, Dai Y, Ma D, et al. High efficiency tandem organic lightemitting devices with Al/WO3/Au interconnecting layer[J]. Appl. Phys. Lett., 2007, 91(12): 1235041235043.

[23] Liao L S, Klubek K P, Tang C W. Highefficiency tandem organic lightemitting diodes[J]. Appl. Phys. Lett., 2004, 84(2): 167169.

[24] Guo F, Ma D. White organic lightemitting diodes based on tandem structures[J]. Appl. Phys. Lett., 2005, 87(17): 1735101735103.

[25] Chan M Y, Lai S L, Lau K M, et al. Influences of connecting unit architecture on the performance of tandem organic lightemitting devices[J]. Adv. Functional Mater., 2007, 17(14): 25092514.

王振, 柳菲, 郑新, 陈爱, 谢嘉凤. 有机电荷产生层对叠层磷光OLED器件性能的影响[J]. 半导体光电, 2018, 39(3): 332. WANG Zhen, LIU Fei, ZHENG Xin, CHEN Ai, XIE Jiafeng. Effect of Organic Charge Generation Layer on Optoelectronic Performance of Tandem Phosphorescent OLED[J]. Semiconductor Optoelectronics, 2018, 39(3): 332.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!