Photonics Research, 2015, 3 (2): 02000038, Published Online: Jan. 6, 2016  

Raman tensor of AlN bulk single crystal Download: 757次

Author Affiliations
1 State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering,Sun Yat-Sen University, Guangzhou 510275, China
2 Institute of Optoelectronics, Shenzhen University, Shenzhen 518060, China
3 Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China
Abstract
The angle dependence of optical phonon modes of an AlN bulk single crystal from the m-plane (1100) and c-plane (0001) surfaces, respectively, is investigated by polarized Raman spectroscopy in a backscattering configuration at room temperature. Corresponding Raman selection rules are derived according to measured scattering geometries to illustrate the angle dependence. The angle-dependent intensities of phonon modes are discussed and compared to theoretical scattering intensities, yielding the Raman tensor elements of A1(TO), E22 , E1(TO), and A1(LO) phonon modes and the relative phase difference between the two complex elements of A1_TO_. Furthermore, the Raman tensor of wurtzite AlN is compared with that of wurtzite ZnO reported in previous work, revealing the intrinsic differences of lattice vibration dynamics between AlN and ZnO.
References

[1] Y. Taniyasu, M. Kasu, and T. Makimoto, “An aluminium nitride light-emitting diode with a wavelength of 210 nanometres,” Nature 441, 325–328 (2006).

[2] T. Oto, R. G. Banal, K. Kataoka, M. Funato, and Y. Kawakami, “100 mW deep-ultraviolet emission from aluminium-nitridebased quantum wells pumped by an electron beam,” Nat. Photonics 4, 767–770 (2010).

[3] A. BenMoussa, J. F. Hochedez, R. Dahal, J. Li, J. Y. Lin, H. X. Jiang, A. Soltani, J.-C. De Jaeger, U. Kroth, and M. Richter, “Characterization of AlN metal-semiconductor-metal diodes in the spectral range of 44–360 nm: photoemission assessments,” Appl. Phys. Lett. 92, 022108 (2008).

[4] S. J. Zinkle, V. A. Skuratov, and D. T. Hoelzer, “On the conflicting roles of ionizing radiation in ceramics,” Nucl. Instrum. Methods Phys. Res. B 191, 758–766 (2002).

[5] G. Yu, Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe (Wiley, 2001).

[6] I. Ahmad, V. Kasisomayajula, M. Holtz, J. M. Berg, S. R. Kurtz, C. P. Tigges, A. A. Allerman, and A. G. Baca, “Self-heating study of an AlGaN/GaN-based heterostructure field-effect transistor using ultraviolet micro-Raman scattering,” Appl. Phys. Lett. 86, 173503 (2005).

[7] M. Kuball, S. Rajasingam, A. Sarua, M. J. Uren, T. Martin, B. T. Hughes, K. P. Hilton, and R. S. Balmer, “Measurement of temperature distribution in multifinger AlGaN/GaN heterostructure field-effect transistors using micro-Raman spectroscopy,” Appl. Phys. Lett. 82, 124–126 (2003).

[8] A. J. Kent and J. K. Wigmore, Electron-Phonon Interactions in Low-Dimensional Structures (Oxford University, 2003). 9. O. Brafman, G. Lengycl, S. S. Mitra, P. J. Gielisse, J. N. Plendl, and L. C. Mansur, “Raman spectra of aluminum nitride, cubic boron nitride and boron phosphide,” Solid State Commun. 6, 523–526 (1968).

[9] J. A. Sanjurjo, E. López-Cruz, P. Vogl, and M. Cardona, “Dependence on volume of the phonon frequencies and their effective charges of several III-V semiconductors,” Phys. Rev. B 28, 4579–4584 (1983).

[10] M. Kuball, J. M. Hayes, A. D. Prins, N. W. Van Uden, D. J. Dunstan, Y. Shi, and J. H. Edgar, “Raman scattering studies on single-crystalline bulk AlN under high pressures,” Appl. Phys. Lett. 78, 724–726 (2001).

[11] C. Carlonc, K. M. Lakin, and H. R. Shanks, “Optical phonons of aluminum nitride,” J. Appl. Phys. 55, 4010–4014 (1984).

[12] L. McNeil, M. Grimsditch, and R. H. French, “Vibrational spectroscopy of aluminum nitride,” J. Am. Ceram. Soc. 76, 1132–1136 (1993).

[13] M. Kuball, J. M. Hayes, Y. Shi, and J. H. Edgar, “Phonon lifetimes in bulk AlN and their temperature dependence,”Appl. Phys. Lett. 77, 1958–1960 (2000).

[14] J. M. Hayes, M. Kuball, Y. Shi, and J. H. Edgar, “Temperature dependence of the phonons of bulk AlN,” Jpn. J. Appl. Phys. 39, L710 (2000).

[15] D. Y. Song, M. Holtz, A. Chandolu, S. A. Nikishin, E. N. Mokhov, Y. Makarov, and H. Helava, “Optical phonon decay in bulk aluminum nitride,” Appl. Phys. Lett. 89, 021901 (2006).

[16] P. Pandit, D. Y. Song, and M. Holtz, “Decay of zone-center phonons in AlN with A1, E1, and E2 symmetries,” J. Appl. Phys. 102, 113510 (2007).

[17] L. Bergman, M. Dutta, C. Balkas, R. F. Davis, J. A. Christman, D. Alexson, and R. J. Nemanich, “Raman analysis of the E1 and A1 quasi-longitudinal optical and quasi-transverse optical modes in wurtzite AlN,” J. Appl. Phys. 85, 3535–3539 (1999).

[18] H.-C. Hsu, G.-M. Hsu, Y.-s. Lai, Z. C. Feng, S.-Y. Tseng, A. Lundskog, U. Forsberg, E. Janzén, K.-H. Chen, and L.-C. Chen, “Polarized and diameter-dependent Raman scattering from individual aluminum nitride nanowires: the antenna and cavity effects,” Appl. Phys. Lett. 101, 121902 (2012).

[19] F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B 56, R10024(R) (1997).

[20] Y. Taniyasu, M. Kasu, and T. Makimoto, “Radiation and polarization properties of free-exciton emission from AlN (0001) surface,” Appl. Phys. Lett. 90, 261911 (2007).

[21] R. G. Banal, M. Funato, and Y. Kawakami, “Optical anisotropy in [0001]-oriented AlxGa1-xN/AlN quantum wells (x > 0.69),” Phys. Rev. B 79, 121308(R) (2009).

[22] L. C. de Carvalho, A. Schleife, F. Fuchs, and F. Bechstedt, “Valence-band splittings in cubic and hexagonal AlN, GaN, and InN,” Appl. Phys. Lett. 97, 232101 (2010).

[23] J. Li, K. B. Nam, M. L. Nakarmi, J. Y. Lin, H. K. Jiang, P. Carrier, and S.-H. Wei, “Band structure and fundamental optical transitions in wurtzite AlN,” Appl. Phys. Lett. 83, 5163–5165 (2003).

[24] H. L. Wu, R. S. Zheng, Z. Yan, M. M. Li, and W. Zheng, “Effect of temperature distribution on growth habit of AlN crystal,” J. Shenzhen Univ. Sci. Eng. 29, 487–491 (2012).

[25] T. Sander, S. Eisermann, B. K. Meyer, and P. J. Kar, “Raman tensor elements of wurtzite ZnO,” Phys. Rev. B 85, 165208 (2012).

[26] T. Strach, J. Brunen, B. Lederle, J. Zegenhagen, and M. Cardona, “Determination of the phase difference between the Raman tensor elements of the A1g-like phonons in SmBa2Cu3O7-δ,” Phys. Rev. B 57, 1292–1297 (1998).

[27] M. Cardona and G. Guntherodt, Light Scattering in Solid II (Springer, 1982), pp. 22–45.

[28] R. Loudon, “The Raman effect in crystals,” Adv. Phys. 13, 423–482 (1964).

[29] R. H. Callender, S. S. Sussman, M. Selders, and R. K. Chang, “Dispersion of Raman cross section in CdS and ZnO over a wide energy range,” Phys. Rev. B 7, 3788–3798 (1973).

[30] D. Olego and M. Cardona, “Raman scattering by coupled LO-phonon-plasmon modes and forbidden TO-phonon Raman scattering in heavily doped p-type GaAs,” Phys. Rev. B 24, 7217–7232 (1981).

[31] W. Zheng, R. S. Zheng, H. L. Wu, and F. D. Li, “Strongly anisotropic behavior of A1(TO) phonon mode in bulk AlN,” J. Alloys Compd. 584, 374–376 (2014).

[32] S. Go, H. Bilz, and M. Cardona, “Bond charge, bond polarizability, and phonon spectra in semiconductors,” Phys. Rev. Lett. 34, 580–583 (1975).

[33] W. Zheng, Z. C. Feng, J. Lee, D. Wuu, and R. S. Zheng, “Lattice deformation of wurtzite MgxZn1-xO alloys: an extended X-ray absorption fine structure study,” J. Alloys Compd. 582, 157–160 (2014).

Wei Zheng, Ruisheng Zheng, Feng Huang, Honglei Wu, Fadi Li. Raman tensor of AlN bulk single crystal[J]. Photonics Research, 2015, 3(2): 02000038.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!