强激光与粒子束, 2011, 23 (7): 1945, 网络出版: 2011-07-29   

超热电子能量分布的实验和模拟研究

Experimental and simulative study on energy distribution of hot electrons
作者单位
1 内江师范学院 物理与电子信息工程学院, 四川 内江 641112
2 中国工程物理研究院 激光聚变研究中心, 四川 绵阳 621900
摘要
采用LiF探测器堆测量了飞秒激光-薄膜靶相互作用中超热电子产生的剂量。根据电子在LiF中的质量碰撞阻止本领,理论上计算出了超热电子的能量分布;在相同实验条件下,数值模拟结果与实验测量结果较好地一致,证明了实验测量的可靠性。理论分析显示,共振吸收是激光-薄膜靶相互作用中电子加速的主要机制。
Abstract
The dose produced by the hot electrons from the laser-foil target interaction has been measured by using a LiF thermoluminescence dosimeters(TLDs) stack. The hot electron energy distribution has been obtained from the mass stopping power of the electron in the LiF TLDs. The hot electron energy distribution of the PIC simulation is more consistent with the result from the experiment. The theoretical analysis proves that the resonance absorption is the primary mechanism of the electron acceleration.
参考文献

[1] Wilks S C, Kruer W L, Tabak M, et al. Absorption of ultra-intense laser pulses[J].Phys Rev Lett,1992,69(9):1383-1386.

[2] Malka G, Miquel J L. Experimental confirmation of ponderomotive-force electrons produced by an ultrarelativistic laser pulse on a solid target[J].Phys Rev Lett,1996,77(1):75-78.

[3] Beg F N, Bell A R, Dangor A E, et al. A study of picosecond laser-solid interactions up to 1019 W·cm-2 [J].Phys Plasmas,1997,4(2):447-457.

[4] Malka G, Fuchs J, Amiranoff F, et al. Suprathermal electron generation and channel formation by an ultrarelativistic laser pulse in an underdense preformed plasma[J].Phys Rev Lett,1997,79(11):2053-2056.

[5] Malka G, Lefebvre E, Miquel J L. Experimental observation of electrons accelerated in vacuum to relativistic energies by a high-intensity laser[J].Phys Rev Lett,1997,78(17):3314-3317.

[6] Schlegel T, Bastiani S, Gremillet L, et al. Comparison of measured and calculated X-ray and hot-electron production in short-pulse laser-solid interactions at moderate intensities[J].Phys Rev E,1999,60(2):2209-2217.

[7] Zhidkov A, Sasaki A, Utsumi T, et al. Prepulse effects on the interaction of intense femtosecond laser pulses with high-Z solids[J].Phys Rev E,2000,62(5):7232-7240.

[8] Zhidkov A G, Sasaki A, Fukumoto I, et al. Pulse duration effect on the distribution of energetic particles produced by intense femtosecond laser pulses irradiating solids[J].Phys Plasmas,2001,8(8):3718-3723.

[9] Chen L M, Zhang J, Dong Q L, et al. Hot electron generation via vacuum heating process in femtosecond laser-solid interactions[J].Phys Plasmas,2001,8(6):2925-2910.

[10] Dong Q L, Zhang J. Electron acceleration by static and oscillating electric fields produced in the interaction between femtosecond laser pulses and solid targets[J].Phys Plasmas,2001,8(3):1025-1028.

[11] Chen L M, Zhang J, Teng H, et al. Experimental study of a subpicosecond pulse laser interacting with metallic and dielectric targets[J].Phys Rev E,2001,63:036403.

[12] Bastiani S, Audebert P, Geindre J P, et al. Hot-electron distribution functions in a subpicosecond laser interaction with solid targets of varying initial gradient scale lengths[J]. Phys Rev E, 1999,60(3):3439-3442.

[13] Forslund D W, Kindel J M, Kenneth L, et al. Theory and simulation of resonant absorption in a hot plasma[J].Phys Rev A,1975,11(2):679-683.

[14] Brunel F. Not-so-resonant, resonant absorption[J].Phys Rev Lett,1987,59(1):52-55.

[15] Brunel F. Anomalous absorption of high intensity subpicoscond laser pulses[J]. Phys Fluids,1988,31(9):2714-2719.

[16] Liu Shibing, Zhang Jie, Wei Yu. Acceleration and double-peak spectrum of hot electrons in relativistic laser plasmas[J].Phys Rev E,1999,60(3):3279-3282.

[17] Sprangle P, Esarey E, Ting A, et al. Laser wakefield acceleration and relativistic optical guiding[J].Appl Phys Lett,1988,53(22):2146-2148.

[18] Amiranoff F, Baton S, Bernard D, et al. Observation of laser wakefield acceleration of electrons[J].Phys Rev Lett,1998,81(5):995-998.

[19] Schnürer M, Nolte R, Rousse A, et al. Dosimetric measurements of electron and photon yields from solid targets irradiated with 30 fs pulses from a 14 TW laser[J].Phys Rev E,2000,61:4394-4401.

[20] 蔡达锋,谷渝秋,郑志坚,等,飞秒激光-薄膜靶相互作用中超热电子产额和激光转化效率[J]. 强激光与粒子束,2005,17(1):37-41.(Cai Dafeng, Gu Yuqiu, Zheng Zhijian, et al. Yield of hot electrons and conversion efficiency of laser energy in fs laser-foil targets.High Power Laser and Particle Beams,2005,17(1):37-41)

[21] Bilski P, Budzanowski M, Olko P, et al. Properties of different thin-layer LiF: Mg, Cu, P TL detectors for beta dosimetry[J].Radiat Prot Dosim,1996,66(1/4):101-104.

[22] 张兴宝. 1~50 MeV电子束辐射剂量学[M]. 北京:原子能出版社,1994:8-11.(Zhang Xingbao. 1~50 MeV electron beam radiation dosimetry. Beijing: Atomic Energy Press, 1994:8-11)

[23] 谷渝秋,蔡达锋,郑志坚,等.飞秒激光-固体靶相互作用中超热电子能量分布的实验研究[J]. 物理学报,2005,54(1):186-191.(Gu Yuqiu, Cai Dafeng, Zheng Zhijian, et al. Experimental study on energy distribution of the hot electrons generated by femtosecond laser interacting with solid targets.Acta Physica Sinica,2005,54(1):186-191)

[24] Grimes M K, Rundquist A R, Lee Y S, et al. Experimental identification of “vacuum heating” at femtosecond-laser-irradiated metal surfaces[J].Phys Rev Lett,1999,82(20):4010-4013.

[25] Estabrook K G, Valeo E J, Kruer W L. Two-dimensional relativistic simulations of resonance absorption[J].Phys Fluids,1975,18(9):1151-1159.

[26] 蔡达锋,谷渝秋,郑志坚,等.快电子前向发射的实验与模拟[J]. 中国科学:G辑,2008,38(9):1214-1220.(Cai Dafeng, Gu Yuqiu, Zheng Zhijian, et al. Experimental and simulative study for the forward emission of fast electrons.Science in China:Series G,2008,38(9):1214-1220)

蔡达锋, 王剑, 谷渝秋, 郑志坚, 周维民, 焦春晔, 温天舒, 淳于书泰. 超热电子能量分布的实验和模拟研究[J]. 强激光与粒子束, 2011, 23(7): 1945. Cai Dafeng, Wang Jian, Gu Yuqiu, Zheng Zhijian, Zhou Weimin, Jiao Chunye, Wen Tianshu, Chunyu Shutai. Experimental and simulative study on energy distribution of hot electrons[J]. High Power Laser and Particle Beams, 2011, 23(7): 1945.

本文已被 1 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!