Photonics Research, 2021, 9 (3): 03000344, Published Online: Feb. 24, 2021  

Control of the harmonic near-field distributions by an active metasurface loaded with pin diodes

Author Affiliations
1 State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
2 e-mail: tjcui@seu.edu.cn
Copy Citation Text

Jin Yang, Jun Chen Ke, Mao Chen, Ming Zheng Chen, Jun Yan Dai, Jian Feng Chen, Rui Yang, Jun Wei Wu, Qiang Cheng, Tie Jun Cui. Control of the harmonic near-field distributions by an active metasurface loaded with pin diodes[J]. Photonics Research, 2021, 9(3): 03000344.

References

[1] J. B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 2000, 85: 3966-3969.

[2] J. Valentine, S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang. Three-dimensional optical metamaterial with a negative refractive index. Nature, 2008, 455: 376-379.

[3] G. Rosenblatt, O. Meir. Perfect lensing by a single interface: defying loss and bandwidth limitations of metamaterials. Phys. Rev. Lett., 2015, 115: 195504.

[4] J. B. Pendry, D. Schurig, D. R. Smith. Controlling electromagnetic fields. Science, 2006, 312: 1780-1782.

[5] R. Liu, C. Ji, J. J. Mock, J. Y. Chin, T. J. Cui, D. R. Smith. Broadband ground-plane cloak. Science, 2009, 323: 366-369.

[6] H. F. Ma, T. J. Cui. Three-dimensional broadband and broad-angle transformation-optics lens. Nat. Commun., 2010, 1: 124.

[7] J. Zhao, Q. Cheng, X. K. Wang, M. J. Yuan, X. Zhou, X. J. Fu, M. Q. Qi, S. Liu, H. B. Chen, Y. Zhang, T. J. Cui. Controlling the bandwidth of terahertz low-scattering metasurfaces. Adv. Opt. Mater., 2016, 4: 1773-1779.

[8] L. X. Liu, X. Q. Zhang, M. Kenney, X. Q. Su, N. N. Xu, C. M. Ouyang, Y. L. Shi, J. G. Han, W. L. Zhang, S. Zhang. Broadband metasurfaces with simultaneous control of phase and amplitude. Adv. Mater., 2014, 26: 5031-5036.

[9] J. Ding, S. S. An, B. W. Zhang, H. L. Zhang. Multiwavelength metasurfaces based on single-layer dual-wavelength meta‐atoms:toward complete phase and amplitude modulations at two wavelengths. Adv. Opt. Mater., 2017, 5: 1700079.

[10] N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 2011, 334: 333-337.

[11] F. Ding, R. Deshpande, S. I. Bozhevolnyi. Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence. Light Sci. Appl., 2018, 7: 17178.

[12] H. L. Zhu, S. W. Cheung, K. L. Chung, T. I. Yuk. Linear-to-circular polarization conversion using metasurface. IEEE Trans. Antennas Propag., 2013, 61: 4615-4623.

[13] A. Y. Horie, M. Bagheri, A. Faraon. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 2015, 10: 937-943.

[14] J. P. B. Mueller, N. A. Rubin, R. C. Devlin, B. Groever, F. Capasso. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett., 2017, 118: 113901.

[15] D. W. Hu, J. Cao, W. Li, C. Zhang, T. L. Wu, Q. F. Li, Z. H. Chen, Y. L. Wang, J. G. Guan. Optically transparent broadband microwave absorption metamaterial by standing‐up closed‐ring resonators. Adv. Opt. Mater., 2017, 5: 1700109.

[16] J. Zhao, C. Zhang, Q. Cheng, J. Yang, T. J. Cui. An optically transparent metasurface for broadband microwave antireflection. Appl. Phys. Lett., 2018, 112: 073504.

[17] D. Hu, X. Wang, S. Feng, J. Ye, W. Sun, Q. Kan, P. J. Klar, Y. Zhang. Ultrathin terahertz planar elements. Adv. Opt. Mater., 2013, 1: 186-191.

[18] L. L. Huang, X. Z. Chen, H. Mühlenbernd, H. Zhang, S. M. Chen, B. F. Bai, Q. F. Tan, G. F. Jin, K. W. Cheah, C. W. Qiu, J. S. Li, T. Zentgraf, S. Zhang. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun., 2013, 4: 2808.

[19] L. H. Gao, Q. Cheng, J. Yang, S. J. Ma, J. Zhao, S. Liu, H. B. Chen, Q. He, W. X. Jiang, H. F. Ma, Q. Y. Wen, L. J. Liang, B. B. Jin, W. W. Liu, L. Zhou, J. Q. Yao, P. H. Wu, T. J. Cui. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces. Light Sci. Appl., 2015, 4: e324.

[20] C. D. Giovampaola, N. Engheta. Digital metamaterials. Nat. Mater., 2014, 13: 1115-1121.

[21] T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, Q. Cheng. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl., 2014, 3: e218.

[22] X. Wan, X. P. Shen, Y. Luo, T. J. Cui. Planar bifunctional Luneburg-fisheye lens made of an anisotropic metasurface. Laser Photon. Rev., 2014, 8: 757-765.

[23] M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, F. Capasso. Achromatic metasurface lens at telecommunication wavelengths. Nano Lett., 2015, 15: 5358-5362.

[24] J. Yang, C. Zhang, H. F. Ma, J. Zhao, J. D. Dai, W. Yuan, L. X. Yang, Q. Cheng, T. J. Cui. Generation of radio vortex beams with designable polarization using anisotropic frequency selective surface. Appl. Phys. Lett., 2018, 112: 203501.

[25] L. Li, T. Jun Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. Bo Li, M. Jiang, C. W. Qiu, S. Zhang. Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun., 2017, 8: 197.

[26] J. Yang, C. Zhang, H. F. Ma, W. Yuan, L. X. Yang, J. C. Ke, M. Z. Chen, A. Mahmoud, Q. Cheng, T. J. Cui. Tailoring polarization states of multiple beams that carry different topological charges of orbital angular momentums. Opt. Express, 2018, 26: 31664-31674.

[27] X. Ni, A. V. Kildishev, V. M. Shalaev. Metasurface holograms for visible light. Nat. Commun., 2013, 4: 2807.

[28] J. W. Wu, Z. X. Wang, Z. Q. Fang, J. C. Liang, X. Fu, J. F. Liu, H. T. Wu, D. Bao, L. Miao, X. Y. Zhou, Q. Cheng, T. J. Cui. Full-state synthesis of electromagnetic fields using high efficiency phase-only metasurfaces. Adv. Funct. Mater., 2020, 30: 2004144.

[29] J. W. Wu, R. Y. Wu, X. C. Bo, X. J. Fu, T. J. Cui. Synthesis algorithm for near-field power pattern control and its experimental verification via metasurfaces. IEEE Trans. Antennas Propag., 2019, 67: 1073-1083.

[30] J. W. Wu, Z. X. Wang, Q. Cheng, T. J. Cui. Anisotropic metasurface holography in 3D space with high resolution and efficiency. IEEE Trans. Antennas Propag., 2021, 69: 302-316.

[31] T. J. Cui, S. Liu, G. D. Bai, Q. Ma. Direct transmission of digital message via programmable coding metasurface. Research, 2019, 2019: 2584509.

[32] Z. Tao, X. Wan, B. C. Pan, T. J. Cui. Reconfigurable conversions of reflection, transmission, and polarization states using active metasurface. Appl. Phys. Lett., 2017, 110: 121901.

[33] C. Zhang, J. Gao, X. Cao, S. J. Li, H. H. Yang, L. Li. Multifunction tunable metasurface for entire-space electromagnetic wave manipulation. IEEE Trans. Antennas Propag., 2020, 68: 3301-3306.

[34] C. Huang, C. L. Zhang, J. Yang, B. Sun, B. Zhao, X. G. Luo. Reconfigurable metasurface for multifunctional control of electromagnetic waves. Adv. Opt. Mater., 2017, 5: 1700485.

[35] M. Qian, G. D. Bai, H. B. Jing, C. Yang, L. L. Li, T. J. Cui. Smart metasurface with self-adaptively reprogrammable functions. Light Sci. Appl., 2019, 8: 98.

[36] J. Zhao, Q. Cheng, J. Chen, M. Q. Qi, W. X. Jiang, T. J. Cui. A tunable metamaterial absorber using varactor diodes. New J. Phys., 2013, 15: 043049.

[37] Z. J. Luo, Q. Wang, X. G. Zhang, J. W. Wu, J. Y. Dai, L. Zhang, H. T. Wu, H. C. Zhang, H. F. Ma, Q. Cheng, T. J. Cui. Intensity-dependent metasurface with digitally reconfigurable distribution of nonlinearity. Adv. Opt. Mater., 2019, 7: 1900792.

[38] Z. J. Luo, M. Z. Chen, Z. X. Wang, L. Zhou, Y. B. Li, Q. Cheng, H. F. Ma, T. J. Cui. Digital nonlinear metasurface with customizable nonreciprocity. Adv. Funct. Mater., 2019, 29: 1906635.

[39] G. X. Zhang, W. X. Tang, W. X. Jiang, G. D. Bai, J. Tang, L. Bai, C. W. Qiu, T. J. Cui. Light‐controllable digital coding metasurfaces. Adv. Sci., 2018, 5: 1801028.

[40] S. V. Hum, J. Carrier. Reconfigurable reflectarrays and array lenses for dynamic antenna beam control: a review. IEEE Trans. Antennas Propag., 2014, 62: 183-198.

[41] M. Kauranen, A. V. Zayats. Nonlinear plasmonics. Nat. Photonics, 2012, 6: 737-748.

[42] A. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, Y. S. Kivshar. Functional and nonlinear optical metasurfaces. Laser Photon. Rev., 2015, 9: 195-213.

[43] G. Li, S. Chen, N. Pholchai, B. Reineke, P. W. H. Wong, E. Y. B. Pun, K. W. Cheah, T. Zentgraf, S. Zhang. Continuous control of the nonlinearity phase for harmonic generations. Nat. Mater., 2015, 14: 607-612.

[44] E. Almeida, G. Shalem, Y. Prior. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces. Nat. Commun., 2016, 7: 10367.

[45] G. Li, S. Zhang, T. Zentgraf. Nonlinear photonic metasurfaces. Nat. Rev. Mater., 2017, 2: 17010.

[46] J. Zhao, X. Yang, J. Y. Dai, Q. Cheng, X. Li, N. H. Qi, J. C. Ke, G. D. Bai, S. Liu, S. Jin, A. Alu, T. J. Cui. Programmable time-domain digital-coding metasurface for non-linear harmonic manipulation and new wireless communication systems. Natl. Sci. Rev., 2018, 6: 231-238.

[47] L. Zhang, X. Q. Chen, S. Liu, Q. Zhang, J. Zhao, J. Y. Dai, G. D. Bai, X. Wan, Q. Cheng, G. Castaldi, V. Galdi, T. J. Cui. Space-time-coding digital metasurfaces. Nat. Commun., 2018, 9: 4334.

[48] L. Zhang, X. Q. Chen, R. W. Shao, J. Y. Dai, Q. Cheng, G. Castaldi, V. Galdi, T. J. Cui. Breaking reciprocity with space‐time‐coding digital metasurfaces. Adv. Mater., 2019, 31: 1904069.

[49] J. Y. Dai, J. Zhao, Q. Cheng, T. J. Cui. Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface. Light Sci. Appl., 2018, 7: 90.

[50] J. C. Ke, J. Y. Dai, M. Z. Chen, L. Wang, C. Zhang, W. Tang, J. Yang, W. Liu, X. Li, Y. F. Liu, Q. Cheng, S. Jin, T. J. Cui. Linear and nonlinear polarization syntheses and their programmable controls based on anisotropic time-domain digital coding metasurface. Small Struct., 2021, 2: 2000060.

[51] J. Y. Dai, J. Yang, W. Tang, M. Z. Chen, J. C. Ke, Q. Cheng, S. Jin, T. J. Cui. Arbitrary manipulations of dual harmonics and their wave behaviors based on space-time-coding digital metasurface. Appl. Phys. Rev., 2020, 7: 041408.

[52] https://www.skyworksinc.com.

Jin Yang, Jun Chen Ke, Mao Chen, Ming Zheng Chen, Jun Yan Dai, Jian Feng Chen, Rui Yang, Jun Wei Wu, Qiang Cheng, Tie Jun Cui. Control of the harmonic near-field distributions by an active metasurface loaded with pin diodes[J]. Photonics Research, 2021, 9(3): 03000344.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!