量子电子学报, 2004, 21 (6): 719, 网络出版: 2006-05-15   

腔量子电动力学与量子信息过程

Cavity QED and quantum information process
作者单位
量子光学与光量子器件国家重点实验室,山西大学光电研究所,山西,太原,030006
摘要
本文简要介绍了实现量子信息的几种可能方案,特别是腔QED方案的背景、特点、主要困难和目前的进展,同时介绍了山西大学量子光学与光量子器件国家重点实验室在这方面的实验进展.
Abstract
We briefly introduce the protocols of realizing quantum information process, mainly focus on the cavity quantum electrodynamics (cavity QED), including its background, features, difficulty and the progress. We also introduce the recent progress of cavity QED in State Key Laboratory of Quantum Optics and Quantum Optics Devices at Shanxi University
参考文献

[1] . Quantum cryptography based on Bell's theorem[J]. Phys. Rev. Lett., 1991, 67(6): 661-663.

[2] . Quantum dense coding exploiting a bright Einstein-Podolsky-Rosen beam[J]. Phys. Rev. Lett., 2002, 88(4): 047904.

[3] . Quantum teleportation of light beams[J]. Phys. Rev. A, 2003, 67(3): 033802.

[4] Shor P W. Algorithms for quantum computation: Discrete logarithms and factoring [C] //in Proceedings of the 35th Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, 1994, 124-134.

[5] Grover L K. A fast quantum mechanical algorithm for database search [C] //in Proceedings of the 28th Annual ACM Symposium on the Theory of Computation, ACM Press, 1996, 212-219.

[6] . Quantum mechanics helps in searching for a Needle in a Haystack[J]. Phys. Rev. Lett., 1997, 79(2): 325-328.

[7] . Conservative logic[J]. Int. J. Theoretical Physics., 1982, 21: 219-253.

[8] . Quantum computational networks[J]. Proc. R. Soc. Lond. A., 1989, 45: 73-90.

[9] . Two-bit gate are universal for quantum computation[J]. Phys. Rev. A., 1995, 51(2): 1015-1022.

[10] Deutsch D. Quantum theory, the Church-Turing principle and the universal quantum computer [J]. Proc. R. Soc.Lond. A, 1985, A400: 97-117.

[11] . Quantum computations with cold trapped ions[J]. Phys. Rev. Lett., 1995, 74(20): 4091-4094.

[12] . The ion trap quantum information processor[J]. Appl. Phys. B., 1997, 64: 623-642.

[13] . Conditional quantum dynamics and logic gates[J]. Phys. Rev. Lett., 1995, 74(20): 4083-4086.

[14] . Quantum computation with quantum dots[J]. Phys. Rev. A, 1998, 57(1): 120-126.

[15] Gershenfeld N A, Chuang I L. Bulk spin-resonance quantum computation [J]. Science. 1997, 275: 350-356.

[16] . Realizable universal quantum logic gates[J]. Phys. Rev. Lett., 1995, 74(20): 4087-4090.

[17] . Measurement of condition phase shifts for quantum logic[J]. Phys.Rev. Lett., 1995, 75(25): 4710-4713.

[18] Report of the NSF workshop [R]. U.S.A., Quantum Information Science, 1999, 1-36.

[19] . Separability of very noisy mixed states and implications for NMR quantum computing[J]. Phys. Rev. Lett., 1999, 83(5): 1054-1057.

[20] . Experimental progress of cavity quantum electrodynamicas in the optical domain[J]. Physics (物理), 2003, 32(11): 751-756.

[21] . Decoherence, continuous observation, and quantum computing: a cavity QED model[J]. Phys. Rev. Lett., 1995, 75(21): 3788-3791.

[22] . Conditional quantum phase gate between two 3-state atoms[J]. Phys. Rev. Lett., 2003, 90(9): 097902.

[23] . Coherent operation of a tunable quantum phase gate in cavity QED[J]. Phys. Rev. Lett., 1999, 83(24): 5166-5169.

[24] . Quantum state transfer and entanglement distribution among distant nodes in a quantum network[J]. Phys. Rev. Lett., 1997, 78(16): 3221-3224.

[25] . Quantum communication with dark photons[J]. Phys. Rev. A., 1999, 59: 2659-2664.

[26] . Dynamic generation of maximally entangled photon multiplets by adiabatic passage[J]. Phys. Rev. A., 2000, 61(6): 063817.

[27] . Deterministic single-photon source for distributed quantum networking[J]. Phys.Rev. Lett., 2002, 89(6): 067901.

[28] . Deterministic generation of single photons from one atom trapped in a cavity[J]. Science, 2004, 303: 1992-1994.

[29] . Real-Time cavity QED with single atoms[J]. Phys. Rev. Lett., 1998, 80(19): 4157-4160.

[30] . Control of light pulse propagation with only a few cold atoms in a high-finesse microcavity[J]. Phys. Rev. Lett., 2002, 89(23): 233001.

[31] Bertet P, Osnaghi S, Rauschenbeutel A, et al. A complementarity experiment with an interferometer at the quantum-lassical boundary [J]. Nature. 2001, 411: 166-170.

[32] Maunz P, et al. Cavity cooling of a single atom [J]. Nature. 2004, 428: 50-52.

[33] Guthohrlein G R, et al. A single ion as a nanoscopic probe of an optical field [J]. Nature. 2001, 414: 49-51.

[34] . Coupling a single atomic quantum bit to a high finesse optical cavity[J]. Phys.Rev. Lett., 2002, 89(10): 103001.

[35] . Observing the progressive decoherence of the "Meter " in a quantum measurement[J]. Phys. Rev. Lett., 1996, 77(24): 4887-4890.

[36] . Generation of Einstein-Podolsky-Rosen pairs of atoms[J]. Phys. Rev. Lett., 1997, 79(1): 1-5.

[37] . Step-by-step engineered multiparticle entanglement[J]. Science, 2000, 288: 2024-2028.

[38] . Controlled entanglement of two field modes in a cavity quantum electrodynamics experiment[J]. Phys. Rev. A., 2001, 64(5): 050301.

[39] . Trapping of single atoms in cavity QED[J]. Phys. Rev. Lett., 1999, 83(24): 4987-4990.

[40] . State-insensitive cooling and trapping of single atoms in an optical cavity[J]. Phys. Rev. Lett., 2003, 90(13): 133602.

[41] . Trapping an atom with single photons[J]. Nature, 2000, 404: 365-368.

[42] . The atom-cavity microscope: single atoms bound in orbit by single photons[J]. Science, 2000, 287: 1447-1453.

[43] . Experimental realization of a one-atom laser in the regime of strong coupling[J]. Nature, 2003, 425: 268-270.

[44] . Single atom lasers orderly light[J]. Nature, 2003, 425: 246-247.

[45] . Defermination of the number of atoms trapped in an optical cavity[J]. Phys. Rev.Lett., 2004, 93(14): 143601.

[46] Chapman. A quantum information science and technology roadmap [R]. Report of the quantum information science and technology experts panel 2004. Advanced Research and Development Activity.

[47] Liu Tao, Zhang Tiancai, Wang Junmin, et al. Optical dipole trap in a high-finesse micro-cavity[J]. Acta. Phys.Sin. (物理学报), 2004, 53(5): 1346-1350 (in Chinese).

[48] Geng Tao, et al. Temperature measurement of cold atoms in a cesium magneto-optical trap by means of shortdistance time-of-flight absorption spectrum [J]. (submitted to Acta. Phys. Sin. (物理学报) (in Chinese).

[49] Li Liping, Liu Tao, Li Gang, et al. Measurement of ultra-low losses in optical supercavity [J]. Acta. Phys. Sin.(物理学报), 2004, 53(5): 1401-1405 (in Chinese).

[50] . Ultra-low mean-photon-number measurement with balanced optical heterodyne detection[J]. Chin. Phys. Lett., 2004, 21(4): 671-674.

耿涛, 李刚, 王军民, 张天才. 腔量子电动力学与量子信息过程[J]. 量子电子学报, 2004, 21(6): 719. 耿涛, 李刚, 王军民, 张天才. Cavity QED and quantum information process[J]. Chinese Journal of Quantum Electronics, 2004, 21(6): 719.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!