光学技术, 2018, 44 (1): 19, 网络出版: 2018-02-01   

基于TDLAS的痕量CO浓度检测系统及温压补偿

Detection system of trace CO based on TDLAS and temperature and pressure compensation
作者单位
1 西安科技大学 电气与控制工程学院, 西安 710054
2 西安科技大学 西安市煤炭火灾防治重点实验室, 西安 710054
摘要
利用可调谐二极管激光吸收光谱技术(TDLAS)实现气体高灵敏度, 高精度的非接触式检测。为避免二次谐波信号随环境中温度和压强的改变导致实测出现较大误差, 需对测得的气体浓度进行温压补偿。实验以2332nm波长作为CO的中心吸收波长, 以质量分数125×10-6, 1001×10-6, 1701×10-6的CO作为实验气体。提出了利用BP神经网络补偿模型, 并采用遗传算法(GA)与粒子群算法(PSO)优化BP, 修正受温压影响的标气浓度, 并进行了仿真测试对比。实验结果表明, 采用PSO优化BP补偿效果最好, 修正后的CO浓度平均相对误差约为1.55%, 有效提高了CO气体检测系统的精度。
Abstract
High sensitivity, high resolution and non-contact detection of trace gas can be achieve by tunable diode laser absorption spectroscopy(TDLAS). But second harmonic signal will change with the temperature and pressure, resulting in a large error in the measurements. Therefore, it is necessary to perform the temperature and pressure correction for the measured values. The experiment uses 2332nm wavelength as central absorption wavelength of CO and uses 125×10-6, 1001×10-6, 1701×10-6 concentration of CO as the experimental gas. By changing temperature and pressure different concentration values of CO gas are got. In order to correct concentration and compensate the temperature and pressure, 3 artificial neural network models are proposed and the simulation tests are compared. The experimental results show that the particle swarm optimization (PSO) algorithm has best compensation effect, and the average relative error of measured CO concentration is about 1.55%, so the gas detection accuracy can be largely improved.
参考文献

[1] 王金明,李传宝,李忠虎. 基于TDLAS技术的低浓度CO检测系统设计[J]. 仪表技术与传感器,2015(9):73-76.

    Wang Jinming, Li Chuanbao, Li Zhonghu. Design of low conc-entration CO detection system based on TDLAS Technology[J]. Instrument Technology and Sensors,2015(9):73-76.

[2] 王超,王飞,邢大伟,等. 利用可调谐半导体激光吸收光谱技术对燃烧环境中的CO在线测量[J]. 燃烧科学与技术, 2014,20(2):176-180.

    Wang Chao, Wang Fei, Xing Dawei, et al. On-line measurementof CO in combustion environment by tunable diode laser absor-ption spectroscopy[J]. Combustion Science and Technology, 2014, 20(2): 176-180.

[3] 付华,蔺圣杰,杨欣. 光纤CO气体检测系统的研究[J]. 传感器与微系统, 2009,28(1):13-15.

    Fu Hua, Lin Shengjie, Yang Xin. Study on optical fiber CO gas detection system[J]. Sensor and Micro Systems, 2009, 28(1):13-15.

[4] Che Lu, Ding Yanjun, Peng Zhimin. Calibration-free wavelength modulation spectroscopy for gas concentration measurements u-nder low-absorbance conditions[J] . Chinese Physics B, 2012, 21(12):463-470.

[5] 刘新跃. 基于TDLAS的CO在线检测系统的研究与开发[D].成都: 西南交通大学,2009.

    Liu Xinyue. Research and development of CO online detection system based on TDLAS[D].Chengdu: Southwest Jiaotong University, 2009.

[6] 张景国. 基于TDLAS的一氧化碳气体浓度测量技术研究[D]. 成都:电子科技大学,2011.

    Zhang Jingguo. Measurement of carbon monoxide gas concentr- ation based on TDLAS[D]. Chengdu: University of Electronic Science and Technology, 2011.

[7] 张志荣,吴边,夏滑,等. 基于可调谐半导体激光吸收光谱技术的气体浓度测量温度影响修正方法研究[J]. 物理学报,2013,62(23):183-189.

    Zhang Zhirong, Wu Bian, Xia Hua, et al. Study on temperaturecorrection method of gas concentration measurement based on tunable semiconductor laser absorption spectroscopy[J]. Physical Journal, 2013, 62(23): 183-189.

[8] 黄云彪. 激光气体检测及温压补偿研究[J]. 仪器仪表用户,2015,22(4):21-23.

    Huang Yunbiao. Research on laser gas detection and temperatureand pressure compensation[J]. Instrument User,2015,22(4):21-23.

[9] 夏滑,吴边,张志荣,等. 近红外波段CO高灵敏检测的稳定性研究[J]. 物理学报,2013,62(21):193-199.

    Xia Huang, Wu Bian, Zhang Zhirong, et al. Stability of CO hi-gh sensitivity detection in near infrared band[J].Physical Journal, 2013,62(21):193-199.

[10] 高瑞平,杨特育. 基于TDLAS的一氧化碳浓度检测的研究[J]. 合肥学院学报:自然科学版,2011(3):73-77.

    Gao Ruiping, Yang Teyu. Study on detection of carbon monoxide concentration based on TDLAS[J]. Journal of Hefei University:Natural Science Edition, 2011(3): 73-77.

[11] Mitali P A, Sumit L. BP Gulf of Mexico oil spill:Exploring the link between social and environmental disclosuresand the reputation risk management[J]. Journal of Cleaner Production,2017,140(3):1287-1297.

[12] Kan Ruifeng, Liu Wenqing, Zhang Yujun, et al. Application of α-β-γ filtering to the real-time atmosphere methane concentrationmeasurement[J]. Chinese Physics B,2006,15(6):1379-1383.

[13] Tian H, Srikanthan T, Asari K V, et al. Study on the effect of object to camera distance on polynomial expansion coefficients in barrel distortion correction[C]∥ Proceedings of Fifth IEEE Southwest Symposium on Image Analysis and Interpretation. Santa Fe:IEEE, 2002:1537-1542.

[14] 徐远泽,郭建强,高晓蓉,等. 温度对CO光谱线吸收的影响分析[J]. 激光技术,2010,34(6):778-780.

    Xu Yuanze, Guo Jianqiang, Gao Xiaorong, et al. Influence of temperature on absorption of CO spectral lines[J]. Laser Tech-nology,2010,34(6):778-780.

[15] 张云刚. 二氧化硫和氮氧化物吸收光谱分析与在线监测方法[D]. 哈尔滨:哈尔滨工业大学,2012.

    Zhang Yungang. Absorption spectrum analysis and on-line monitoring method of sulfur dioxide and nitrogen oxides[D]. Harbin: Harbin Institute of Technology, 2012.

[16] 邱志强,唐力铁,于起峰. 基于神经网络模型的CCD像差修正[J]. 光学技术,2003(1):86-88.

    Qiu Zhiqiang, Tang Litie, Yu Qifeng. Aberration correction of CCD based on neural network model[J]. Optical Technology, 2003(1):86-88.

[17] 刘皋,张朝阳,黄磊,等. 基于神经网络遗传算法的激光熔钎焊参数优化[J]. 光学技术,2016,42(5):431-434.

    Liu Gao, Zhang Zhaoyang, Huang Lei, et al. Optimization of laser melting brazing parameters based on neural network genet-ic algorithm[J]. Optical Technology, 2016, 42(5): 431-434.

[18] 李松,刘力军,翟曼. 改进粒子群算法优化BP神经网络的短时交通流预测[J]. 系统工程理论与实践,2012,32(9):2045-2049.

    Li Song, Liu Lijun, Zhai Man. Improved particle swarm optimi-zation algorithm for short-term traffic flow prediction based on the BP neural network[J]. System Engineering Theory and Practice, 2012, 32(9): 2045-2049.

杜京义, 殷聪, 王伟峰, 蔡驰, 王立春. 基于TDLAS的痕量CO浓度检测系统及温压补偿[J]. 光学技术, 2018, 44(1): 19. DU Jingyi, YIN Cong, WANG Weifeng, CAI Chi, WANG Lichun. Detection system of trace CO based on TDLAS and temperature and pressure compensation[J]. Optical Technique, 2018, 44(1): 19.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!