液晶与显示, 2020, 35 (7): 749, 网络出版: 2020-10-27   

液晶微透镜阵列研究进展

Research progress of liquid crystal microlens arrays
作者单位
南方科技大学 电子与电气工程系, 广东 深圳 518055
摘要
液晶微透镜阵列作为基本的光学元件之一, 具有焦距可调、结构紧凑、低功耗、稳定性好等优点, 在微纳光学领域有广泛的应用。经过近40年的发展, 液晶微透镜阵列的研究日趋成熟, 不同结构形式和应用于不同场景的液晶微透镜阵列层出不穷。本文系统总结了液晶微透镜阵列的3种工作原理, 并对近年来的研究进展分类进行描述, 重点放在液晶微透镜的制作过程、结构特点和工作原理, 具体介绍了基于光的折射和衍射原理的液晶微透镜阵列, 涉及透镜结构、液晶取向技术以及透镜阵列的应用等方面。最后总结了液晶微透镜阵列存在的问题和发展趋势。
Abstract
Liquid crystal microlens arrays, as one of the basic optical elements, have the advantages of tunable focal length, compact structure, low power consumption and good stability. They have a wide range of applications in the field of micro-/nano-optics. After nearly 40-year development, the research on liquid crystal microlens arrays has become gradually matured. Liquid crystal microlens arrays with different structures and applications have emerged rapidly. Here, this review article briefly summarizes the three working principles of liquid crystal microlens arrays, and describes the recent research progress separately. The review focuses on the manufacturing process, structural characteristics and working principle of liquid crystal microlens. Particularly, liquid crystal microlens arrays based on refraction and diffraction principles are respectively discussed, involving microlens structures, liquid crystal alignment techniques, as well as their applications. Finally, the key issues and future development trends of liquid crystal microlens arrays are summarized.
参考文献

[1] HUANG H Y, ZHAO Y. Optofluidic lenses for 2D and 3D imaging [J]. Journal of Micromechanics and Microengineering, 2019, 29(7): 073001.

    HUANG H Y, ZHAO Y. Optofluidic lenses for 2D and 3D imaging [J]. Journal of Micromechanics and Microengineering, 2019, 29(7): 073001.

[2] XU S, LI Y, LIU Y F, et al. Fast-response liquid crystal microlens [J]. Micromachines, 2014, 5(2): 300-324.

    XU S, LI Y, LIU Y F, et al. Fast-response liquid crystal microlens [J]. Micromachines, 2014, 5(2): 300-324.

[3] LIN Y H, WANG Y J, RESHETNYAK V. Liquid crystal lenses with tunable focal length [J]. Liquid Crystals Reviews, 2018, 5(2): 111-143.

    LIN Y H, WANG Y J, RESHETNYAK V. Liquid crystal lenses with tunable focal length [J]. Liquid Crystals Reviews, 2018, 5(2): 111-143.

[4] KIM S U, NA J H, KIM C, et al. Design and fabrication of liquid crystal-based lenses [J]. Liquid Crystals, 2017, 44(12/13): 2121-2132.

    KIM S U, NA J H, KIM C, et al. Design and fabrication of liquid crystal-based lenses [J]. Liquid Crystals, 2017, 44(12/13): 2121-2132.

[5] ALGORRI J F, ZOGRAFOPOULOS D C, URRUCHI V, et al. Recent advances in adaptive liquid crystal lenses [J]. Crystals, 2019, 9(5): 272.

    ALGORRI J F, ZOGRAFOPOULOS D C, URRUCHI V, et al. Recent advances in adaptive liquid crystal lenses [J]. Crystals, 2019, 9(5): 272.

[6] 王建国.液晶微透镜阵列研究进展[J].激光与光电子学进展, 2013, 50(1): 010005.

    王建国.液晶微透镜阵列研究进展[J].激光与光电子学进展, 2013, 50(1): 010005.

    WANG J G. Research progress of liquid crystal microlens array [J]. Laser & Optoelectronics Progress, 2013, 50(1): 010005. (in Chinese)

    WANG J G. Research progress of liquid crystal microlens array [J]. Laser & Optoelectronics Progress, 2013, 50(1): 010005. (in Chinese)

[7] LIN Y H, CHEN M S. A pico projection system with electrically tunable optical zoom ratio adopting two liquid crystal lenses [J]. Journal of Display Technology, 2012, 8(7): 401-404.

    LIN Y H, CHEN M S. A pico projection system with electrically tunable optical zoom ratio adopting two liquid crystal lenses [J]. Journal of Display Technology, 2012, 8(7): 401-404.

[8] LIN H C, COLLINGS N, CHEN M S, et al. A holographic projection system with an electrically tuning and continuously adjustable optical zoom [J] Optics Express, 2012, 20(25): 27222-27229.

    LIN H C, COLLINGS N, CHEN M S, et al. A holographic projection system with an electrically tuning and continuously adjustable optical zoom [J] Optics Express, 2012, 20(25): 27222-27229.

[9] DE BOER D K G, HIDDINK M G H, SLUIJTER M, et al. Switchable lenticular based 2D/3D displays [C]//Proceedings of SPIE 6490, Stereoscopic Displays and Virtual Reality Systems XIV. San Jose, CA: SPIE, 2007: 64900R.

    DE BOER D K G, HIDDINK M G H, SLUIJTER M, et al. Switchable lenticular based 2D/3D displays [C]//Proceedings of SPIE 6490, Stereoscopic Displays and Virtual Reality Systems XIV. San Jose, CA: SPIE, 2007: 64900R.

[10] WANG X H, REN H W, WANG Q H. Polymer network liquid crystal (PNLC) lenticular microlens array with no surface treatment [J]. Journal of Display Technology, 2016, 12(8): 773-778.

    WANG X H, REN H W, WANG Q H. Polymer network liquid crystal (PNLC) lenticular microlens array with no surface treatment [J]. Journal of Display Technology, 2016, 12(8): 773-778.

[11] SHI L Y, SRIVASTAVA A K, WAI TAM A M, et al. 2D-3D switchable display based on a passive polymeric lenticular lens array and electrically suppressed ferroelectric liquid crystal [J]. Optics Letters, 2017, 42(17): 3435-3438.

    SHI L Y, SRIVASTAVA A K, WAI TAM A M, et al. 2D-3D switchable display based on a passive polymeric lenticular lens array and electrically suppressed ferroelectric liquid crystal [J]. Optics Letters, 2017, 42(17): 3435-3438.

[12] PARK M K, PARK H, JOO K I, T, et al. Polarization-dependent liquid crystalline polymeric lens array with aberration-improved aspherical curvature for low 3D crosstalk in 2D/3D switchable mobile multi-view display [J]. Optics Express, 2018, 26(16): 20281-20297.

    PARK M K, PARK H, JOO K I, T, et al. Polarization-dependent liquid crystalline polymeric lens array with aberration-improved aspherical curvature for low 3D crosstalk in 2D/3D switchable mobile multi-view display [J]. Optics Express, 2018, 26(16): 20281-20297.

[13] PAGIDI S, MANDA R, BHATTACHARYYA S S, et al. Fast switchable micro-lenticular lens arrays using highly transparent nano-polymer dispersed liquid crystals [J]. Advanced Materials Interfaces, 2019, 6(18): 1900841.

    PAGIDI S, MANDA R, BHATTACHARYYA S S, et al. Fast switchable micro-lenticular lens arrays using highly transparent nano-polymer dispersed liquid crystals [J]. Advanced Materials Interfaces, 2019, 6(18): 1900841.

[14] MA Q G, ZHAO J, ZHANG S D, et al. Tilted LCD pixel with liquid crystal GRIN lens for two-dimensional/three-dimensional switchable display [J]. IEEE Photonics Journal, 2019, 11(4): 6901509.

    MA Q G, ZHAO J, ZHANG S D, et al. Tilted LCD pixel with liquid crystal GRIN lens for two-dimensional/three-dimensional switchable display [J]. IEEE Photonics Journal, 2019, 11(4): 6901509.

[15] CHANG Y C, JEN T H, TING C H, et al. High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display [J]. Optics Express, 2014, 22(3): 2714-2724.

    CHANG Y C, JEN T H, TING C H, et al. High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display [J]. Optics Express, 2014, 22(3): 2714-2724.

[16] ALGORRI J F, URRUCHI V, GARCA-CMARA B, et al. Liquid crystal microlenses for autostereoscopic displays [J]. Materials, 2016, 9(1): 36.

    ALGORRI J F, URRUCHI V, GARCA-CMARA B, et al. Liquid crystal microlenses for autostereoscopic displays [J]. Materials, 2016, 9(1): 36.

[17] 刘晓林, 谢佳, 张永栋, 等.基于电控液晶透镜的自由立体显示技术研究与实现[J].液晶与显示, 2013, 28(4): 552-555.

    刘晓林, 谢佳, 张永栋, 等.基于电控液晶透镜的自由立体显示技术研究与实现[J].液晶与显示, 2013, 28(4): 552-555.

    LIU X L, XIE J, ZHANG Y D, et al. Study and realization of auto-stereoscopic display based on electric-field-driven LC lens [J]. Chinese Journal of Liquid Crystals and Displays, 2013, 28(4): 552-555. (in Chinese)

    LIU X L, XIE J, ZHANG Y D, et al. Study and realization of auto-stereoscopic display based on electric-field-driven LC lens [J]. Chinese Journal of Liquid Crystals and Displays, 2013, 28(4): 552-555. (in Chinese)

[18] ALGORRI J F, URRUCHI V, BENNIS N, et al. Tunable liquid crystal cylindrical micro-optical array for aberration compensation [J]. Optics Express, 2015, 23(11): 13899-13915.

    ALGORRI J F, URRUCHI V, BENNIS N, et al. Tunable liquid crystal cylindrical micro-optical array for aberration compensation [J]. Optics Express, 2015, 23(11): 13899-13915.

[19] TSOU Y S, CHANG K H, LIN Y H. A droplet manipulation on a liquid crystal and polymer composite film as a concentrator and a sun tracker for a concentrating photovoltaic system [J]. Journal of Applied Physics, 2013, 113(24): 244504.

    TSOU Y S, CHANG K H, LIN Y H. A droplet manipulation on a liquid crystal and polymer composite film as a concentrator and a sun tracker for a concentrating photovoltaic system [J]. Journal of Applied Physics, 2013, 113(24): 244504.

[20] BAILEY J, MORGAN P B, GLEESON H F, et al. Switchable liquid crystal contact lenses for the correction of presbyopia [J]. Crystals, 2018, 8(1): 29.

    BAILEY J, MORGAN P B, GLEESON H F, et al. Switchable liquid crystal contact lenses for the correction of presbyopia [J]. Crystals, 2018, 8(1): 29.

[21] KAO Y Y, CHAO P C P, HSUEH C W. A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths [J]. Optics Express, 2010, 18(18): 18506-18518.

    KAO Y Y, CHAO P C P, HSUEH C W. A new low-voltage-driven GRIN liquid crystal lens with multiple ring electrodes in unequal widths [J]. Optics Express, 2010, 18(18): 18506-18518.

[22] LI L W, BRYANT D, BOS P J. Liquid crystal lens with concentric electrodes and inter-electrode resistors [J]. Liquid Crystals Reviews, 2014, 2(2): 130-154.

    LI L W, BRYANT D, BOS P J. Liquid crystal lens with concentric electrodes and inter-electrode resistors [J]. Liquid Crystals Reviews, 2014, 2(2): 130-154.

[23] LI L W, BRYANT D, VAN HEUGTEN T, et al. Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes [J]. Optics Express, 2013, 21(7): 8371-8381.

    LI L W, BRYANT D, VAN HEUGTEN T, et al. Near-diffraction-limited and low-haze electro-optical tunable liquid crystal lens with floating electrodes [J]. Optics Express, 2013, 21(7): 8371-8381.

[24] BEECKMAN J, YANG T H, NYS I, et al. Multi-electrode tunable liquid crystal lenses with one lithography step [J]. Optics Letters, 2018, 43(2): 271-274.

    BEECKMAN J, YANG T H, NYS I, et al. Multi-electrode tunable liquid crystal lenses with one lithography step [J]. Optics Letters, 2018, 43(2): 271-274.

[25] HAN X J, DAI W W, MENG J J, et al. Electrically controlled liquid-crystal microlens arrays based on plane nonuniform spiral microcoils [C]//Proceedings of SPIE 10964, Tenth International Conference on Information Optics and Photonics. Beijing, China: SPIE, 2018: 109641T.

    HAN X J, DAI W W, MENG J J, et al. Electrically controlled liquid-crystal microlens arrays based on plane nonuniform spiral microcoils [C]//Proceedings of SPIE 10964, Tenth International Conference on Information Optics and Photonics. Beijing, China: SPIE, 2018: 109641T.

[26] HAN X J, DAI W W, LI D P, et al. Design and fabrication of electronically controlled liquid crystal microlens arrays with non-uniform coil electrode arrays [C]//Proceedings of SPIE 10607, MIPPR 2017: Multispectral Image Acquisition, Processing, and Analysis. Xiangyang, China: SPIE, 2018: 1060709.

    HAN X J, DAI W W, LI D P, et al. Design and fabrication of electronically controlled liquid crystal microlens arrays with non-uniform coil electrode arrays [C]//Proceedings of SPIE 10607, MIPPR 2017: Multispectral Image Acquisition, Processing, and Analysis. Xiangyang, China: SPIE, 2018: 1060709.

[27] CHEN M C, HAN X J, DAI W W, et al. Optical properties of a liquid-crystal microlens with an arrayed planar non-uniform spiral micro-coil electrode [J]. Journal of the Optical Society of America B, 2019, 36(11): 3174-3180.

    CHEN M C, HAN X J, DAI W W, et al. Optical properties of a liquid-crystal microlens with an arrayed planar non-uniform spiral micro-coil electrode [J]. Journal of the Optical Society of America B, 2019, 36(11): 3174-3180.

[28] CHU F, TIAN L L, LI R, et al. Adaptive nematic liquid crystal lens array with resistive layer [J]. Liquid Crystals, 2020, 47(4): 563-571.

    CHU F, TIAN L L, LI R, et al. Adaptive nematic liquid crystal lens array with resistive layer [J]. Liquid Crystals, 2020, 47(4): 563-571.

[29] TIAN L L, CHU F, DOU H, et al. Short-focus nematic liquid crystal microlens array with a dielectric layer [J]. Liquid Crystals, 2020, 47(1): 76-82, doi: 10.1080/02678292.2019.1630491.

    TIAN L L, CHU F, DOU H, et al. Short-focus nematic liquid crystal microlens array with a dielectric layer [J]. Liquid Crystals, 2020, 47(1): 76-82, doi: 10.1080/02678292.2019.1630491.

[30] LI R, CHU F, DOU H, et al. Double-layer liquid crystal lens array with composited dielectric layer [J]. Liquid Crystals, 2020, 47(2): 248-254.

    LI R, CHU F, DOU H, et al. Double-layer liquid crystal lens array with composited dielectric layer [J]. Liquid Crystals, 2020, 47(2): 248-254.

[31] KAWAMURA M, SATO S. Variable wide range of lens power and its improvement in a liquid-crystal lens using highly resistive films divided into two regions with different diameters [J]. Japanese Journal of Applied Physics, 2018, 57(5): 052602.

    KAWAMURA M, SATO S. Variable wide range of lens power and its improvement in a liquid-crystal lens using highly resistive films divided into two regions with different diameters [J]. Japanese Journal of Applied Physics, 2018, 57(5): 052602.

[32] JULL E I L, WAHLE M, WYATT P J M, et al. Efficiency improvements in a dichroic dye-doped liquid crystal Fresnel lens [J]. Optics Express, 2019, 27(19): 26799-26806.

    JULL E I L, WAHLE M, WYATT P J M, et al. Efficiency improvements in a dichroic dye-doped liquid crystal Fresnel lens [J]. Optics Express, 2019, 27(19): 26799-26806.

[33] LIN H Y, AVCI N, HWANG S J, et al. High-diffraction-efficiency Fresnel lens based on annealed blue-phase liquid crystal-polymer composite [J]. Liquid Crystals, 2019, 46(9): 1359-1366.

    LIN H Y, AVCI N, HWANG S J, et al. High-diffraction-efficiency Fresnel lens based on annealed blue-phase liquid crystal-polymer composite [J]. Liquid Crystals, 2019, 46(9): 1359-1366.

[34] WANG X Q, TAM A M W, JIA S H, et al. Low-voltage-driven smart glass based on micro-patterned liquid crystal Fresnel lenses [J]. Applied Optics, 2019, 58(4): 1146-1151.

    WANG X Q, TAM A M W, JIA S H, et al. Low-voltage-driven smart glass based on micro-patterned liquid crystal Fresnel lenses [J]. Applied Optics, 2019, 58(4): 1146-1151.

[35] HE Z Q, LEE Y H, CHEN R, et al. Switchable Pancharatnam-Berry microlens array with nano-imprinted liquid crystal alignment [J]. Optics Letters, 2018, 43(20): 5062-5065.

    HE Z Q, LEE Y H, CHEN R, et al. Switchable Pancharatnam-Berry microlens array with nano-imprinted liquid crystal alignment [J]. Optics Letters, 2018, 43(20): 5062-5065.

[36] JIANG M, GUO Y B, YU H, et al. Low f-number diffraction-limited Pancharatnam-Berry microlenses enabled by plasmonic photopatterning of liquid crystal polymers [J]. Advanced Materials, 2019, 31(18): 1808028.

    JIANG M, GUO Y B, YU H, et al. Low f-number diffraction-limited Pancharatnam-Berry microlenses enabled by plasmonic photopatterning of liquid crystal polymers [J]. Advanced Materials, 2019, 31(18): 1808028.

[37] KAUR S, KIM Y J, MILTON H, et al. Graphene electrodes for adaptive liquid crystal contact lenses [J]. Optics Express, 2016, 24(8): 8782-8787.

    KAUR S, KIM Y J, MILTON H, et al. Graphene electrodes for adaptive liquid crystal contact lenses [J]. Optics Express, 2016, 24(8): 8782-8787.

蔡文锋, 李怡霏, 蒋浩东, 罗丹, 刘言军. 液晶微透镜阵列研究进展[J]. 液晶与显示, 2020, 35(7): 749. CAI Wen-feng, LI Yi-fei, JIANG Hao-dong, LUO Dan, LIU Yan-jun. Research progress of liquid crystal microlens arrays[J]. Chinese Journal of Liquid Crystals and Displays, 2020, 35(7): 749.

本文已被 6 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!