Chinese Optics Letters, 2014, 12 (9): 090605, Published Online: Aug. 21, 2014  

Supercontinuum generation in a standard single-mode fiber by a Q-switched Tm, Ho:YVO4 laser

Author Affiliations
1 Department of Control Engineering, Naval Aeronautical and Astronautical University, Yantai 264001, China
2 Navy Unit 91404, Qinhuangdao 066001, China
3 National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150080, China
Abstract
Broadband mid-infrared (IR) supercontinuum laser is generated in standard single-mode fiber-28 directly pumped by a 2054 nm nanosecond Q-switched Tm,Ho:YVO4 laser. The average output powers of 0.53 W in the ~1.95–2.5 μm spectral band and 0.65 W in the ~1.97–2.45 μm spectral band are achieved at pulse rate frequencies of 7 and 10 kHz, and the corresponding optic-to-optic conversion efficiencies are 34.6% and 42.4% by considering the coupling efficiency. The output spectra have extremely high flatness in the range 2060–2400 and 2060–2360 nm with negligible intensity variation (<2%), respectively. The output pulse shape is not split, and pulse width is reduced from 29 to ~15.4 ns. The beam quality factor M2 is 1.06, measured using traveling knife-edge method, and the laser beam spot is also monitored by an IR vidicon camera.
References

[1] P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. J?nker, Opt. Laser Eng. 37, 101 (2002).

[2] Y. Sych, R. Engelbrecht, B. Schmauss, D. Kozlov, T. Seeger, and A. Leipertz, Opt. Express 18, 22762 (2010).

[3] K. Karstada, A. Stefanova, M. Wegmullera, H. Zbindena, N. Gi-sina, T. Aellenb, M. Beckb, and J. Faistb, Opt. Laser Eng. 43, 101 (2005).

[4] R. W. Waynant, I. K. Ilev, and I. Gannot, Philos. Trans. R. Soc. Lond. A 359, 635 (2001).

[5] H. W. Li, D. A. Harris, B. W. Xu, P. J. Wrzesinski, V. V. Lozo-voy, and M. Dantus, Appl. Opt. 48, B17 (2009).

[6] K. D. F. Büchter, H. Herrmann, C. Langrock, M. M. Fejer, and W. Sohler, Opt. Lett. 34, 470 (2009).

[7] R. Buczynski, D. Pysz, T. Martynkien, D. Lorenc, I. Kujawa, T. Nasilowski, F. Berghmans, H. Thienpont, and R. Stepien, Laser Phys. Lett. 6, 575 (2009).

[8] I. Zeylikovich, V. Kartazaev, and R. Alfano, J. Opt. Soc. Am. B 22, 1453 (2005).

[9] J. Shu, P. Yan, J. Zhao, J. Zhao, S. Ruan, H. Wei, and J. Luo, Chin. Opt. Lett. 10, S10602 (2012).

[10] W. J. Wadsworth, A. O. Blanch, J. C. Knight, T. A. Birks, T. P. Martin Man, and P. J. Russell, J. Opt. Soc. Am. B 19, 2148 (2002).

[11] M. R. A. Moghaddam, S. W. Harun, R. Akbari, and H. Ahmad, Laser. Phys. Lett. 8, 369 (2011).

[12] C. Zhang, L. Chai, Y. Song, M. Hu, and C. Wang, Chin. Opt. Lett. 11, 051403 (2013).

[13] R. Song, J. Hou, S. P. Chen, W. Q. Wang, and Q. S. Lu, Opt. Lett. 37, 1529 (2012).

[14] A. S. Kurkov, E. M. Sholokhov, and Y. E. Sadovnikova, Laser Phys. Lett. 8, 598 (2011).

[15] O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, F. L. Terry, and A. Chan, J. Opt. Soc. Am. B 28, 2486 (2010).

[16] V. V. Alexander, Z. N. Shi, M. N. Islam, K. Ke, M. J. Freeman, A. Ifarraguerri, J. Meola, A. Absi, J. Leonard, J. Zadnik, S. A. Szalkowski, and G. J. Boer, Opt. Lett. 38, 13 (2013).

[17] J. Swiderski, M. Michalska, and G. Maze, Opt. Express 21, 7581 (2013).

[18] J. Geng, Q. Wang, and S. Jiang, Appl. Opt. 51, 834 (2012).

[19] C. Xia, M. Kumar, M. Y. Cheng, O. P. Kulkarni, M. N. Islam, A. Galvanauskas, F. L. Terry, M. J. Freeman, D. A. Nolan, and W. A. Wood, IEEE J. Sel. Top. Quant. Electron. 13, 789 (2007).

[20] J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, Cambridge, 2010).

[21] J. Swiderski and M. Maciejewska, Appl. Phys. B 12, 513 (2012).

Jiancun Ren, Renlai Zhou, Shuli Lou, Wenbo Hou, Youlun Ju, Yuezhu Wang. Supercontinuum generation in a standard single-mode fiber by a Q-switched Tm, Ho:YVO4 laser[J]. Chinese Optics Letters, 2014, 12(9): 090605.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!