Photonic Sensors, 2017, 7 (4): 336, Published Online: Jan. 9, 2018  

HCPCF-Based In-Line Fiber Fabry-Perot Refractometer and High Sensitivity Signal Processing Method

Author Affiliations
School of Control Science and Engineering, Shandong University, Jinan, 250061, China
Abstract
An in-line fiber Fabry-Perot interferometer (FPI) based on the hollow-core photonic crystal fiber (HCPCF) for refractive index (RI) measurement is proposed in this paper. The FPI is formed by splicing both ends of a short section of the HCPCF to single mode fibers (SMFs) and cleaving the SMF pigtail to a proper length. The RI response of the sensor is analyzed theoretically and demonstrated experimentally. The results show that the FPI sensor has linear response to external RI and good repeatability. The sensitivity calculated from the maximum fringe contrast is –136 dB/RIU. A new spectrum differential integration (SDI) method for signal processing is also presented in this study. In this method, the RI is obtained from the integrated intensity of the absolute difference between the interference spectrum and its smoothed spectrum. The results show that the sensitivity obtained from the integrated intensity is about –1.34×105 dB/RIU. Compared with the maximum fringe contrast method, the new SDI method can provide the higher sensitivity, better linearity, improved reliability, and accuracy, and it’s also convenient for automatic and fast signal processing in real-time monitoring of RI.
References

[1] D. J. Feng, G. X. Liu, X. L. Liu, M. S. Jiang, and Q. M. Sui, “Refractive index sensor based on plastic optical fiber with tapered structure,” Applied Optics, 2014, 53(10): 2007– 2011.

[2] J. Zhao, S. Q. Cao, C. R. Liao, Y. Wang, G. J. Wang, X. Z. Xu, et al., “Surface plasmon resonance refractive sensor based on silver-coated side-polished fiber,” Sensors and Actuators B: Chemical, 2016, 230: 206–211.

[3] S. Singh, S. K. Mishra, and B. D. Gupta, “Sensitivity enhancement of a surface plasmon resonance based fibre optic refractive index sensor utilizing an additional layer of oxides,” Sensors and Actuators A: Physical, 2013, 193: 136–140.

[4] G. Tsigaridas, D. Polyzos, A. Ioannou, M. Fakis, and P. Persephonis, “Theoretical and experimental study of refractive index sensors based on etched fiber Bragg gratings,” Sensors and Actuators A: Physical, 2014, 209: 9–15.

[5] Y. Ran, L. Jin, L. P. Sun, J. Li, and B. O. Guan, “Temperature-compensated refractive-index sensing using a single Bragg grating in an abrupt fiber taper,” IEEE Photonics Journal, 2013, 5(2): 7100208–7100208.

[6] B. Q. Jiang, X. Lu, X. T. Gan, M. Qi, Y. D. Wang, L. Han, et al., “Graphene-coated tilted fiber-Bragg grating for enhanced sensing in low-refractive-index region,” Optics Letters, 2015, 40(17): 3994–3997.

[7] A. Singh, “Long period fiber grating based refractive index sensor with enhanced sensitivity using Michelson interferometric arrangement,” Photonic Sensors, 2015, 5(2): 172–179.

[8] L. Coelho, D. Viegas, J. L. Santos, and J. M. M. M. de Almeida, “Enhanced refractive index sensing characteristics of optical fibre long period grating coated with titanium dioxide thin films,” Sensors and Actuators B: Chemical, 2014, 202: 929–934.

[9] Y. Li, Z. B. Liu, and S. S. Jian, “Multimode interference refractive index sensor based on coreless fiber,” Photonic Sensors, 2014, 4(1): 21–27.

[10] Y. Li, E. Harris, L. Chen, and X. Y. Bao, “Application of spectrum differential integration method in an in-line fiber Mach-Zehnder refractive index sensor,” Optics Express, 2010, 18(8): 8135–8143.

[11] R. Gao, Y. Jiang, W. H. Ding, Z. Wang, and D. Liu, “Filmed extrinsic Fabry-Perot interferometric sensors for the measurement of arbitrary refractive index of liquid,” Sensors and Actuators B: Chemical, 2013, 177: 924–928.

[12] C. L. Lee, J. M. Hsu, J. S. Horng, W. Y. Sung, and C. M. Li, “Microcavity fiber Fabry-Pérot interferometer with an embedded golden thin film,” IEEE Photonics Technology Letters, 2013, 25(9): 833–836.

[13] Z. L. Ran, Y. J. Rao, W. J. Liu, X. Liao, and K. S. Chiang, “Laser-micromachined Fabry-Perot optical fiber tip sensor for high-resolution temperature-independent measurement of refractive index,” Optics Express, 2008, 16(3): 2252–2263.

[14] Y. Gong, Y. Guo, Y. J. Rao, T. Zhao, and Y. Wu, “Fiber-optic Fabry-Perot sensor based on periodic focusing effect of graded-index multimode fibers,” IEEE Photonics Technology Letters, 2010, 22(23): 1708–1710.

[15] D. Wu, Y. Huang, J. Y. Fu, and G. Y. Wang, “Fiber Fabry-Perot tip sensor based on multimode photonic crystal fiber,” Optics Communications, 2015, 338: 288–291.

[16] D. Wu, W. Huang, G. Y. Wang, J. Y. Fu, and Y. Y. Chen, “In-line fiber Fabry-Perot refractive index tip sensor based on photonic crystal fiber and spectrum differential integration method,” Optics Communications, 2014, 313: 270–275.

[17] B. Qi, G. R. Pickrell, J. C. Xu, P. Zhang, Y. H. Duan, W. Peng, et al., “Novel data processing techniques for dispersive white light interferometer,” Optical Engineering, 2003, 42(11): 3165–3171.

[18] Y. Jiang, “High-resolution interrogation technique for fiber optic extrinsic Fabry-Perot interferometric sensors by the peak-to-peak method,” Applied Optics, 2008, 47(7): 925–932.

[19] C. J. Qi, M. H. Yang, D. W. Lee, W. J. Xie, and J. X. Dai, “Improved sensitivity of fiber Fabry-Perot interferometer based on phase-tracking algorithm,” IEEE Sensors Journal, 2015, 15(10): 5834–5838.

[20] X. H. Liu, M. S. Jiang, Q. M. Sui, and F. R. Song, “Temperature sensitivity characteristics of HCPCF-based Fabry-Perot interferometer,” Optics Communications, 2016, 359: 322– 328.

[21] M. S. Jiang, Q. M. Sui, Z. W. Jin, F. Y. Zhang, and L. Jia, “Temperature-independent optical fiber Fabry-Perot refractive-index sensor based on hollow-core photonic crystal fiber,” Optik – International Journal for Light and Electorn Optics, 2014, 125(13): 3295– 3298.

[22] A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data by simplified least squares procedures,” Analytical Chemistry, 1964, 36(8): 1627–1639.

Xiaohui LIU, Mingshun JIANG, Qingmei SUI, Xiangyi GENG, Furong SONG. HCPCF-Based In-Line Fiber Fabry-Perot Refractometer and High Sensitivity Signal Processing Method[J]. Photonic Sensors, 2017, 7(4): 336.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!