红外与激光工程, 2019, 48 (7): 0704002, 网络出版: 2019-08-07   

生物凝聚粒子远红外波段消光特性

Extinction characteristics of biological aggregated particles in the far infrared band
作者单位
1 脉冲功率激光技术国家重点实验室(国防科技大学), 安徽 合肥 230037
2 电子制约技术安徽省重点实验室, 安徽 合肥 230037
摘要
针对生物材料FANS 233D, 采用显微红外光谱仪测定了材料在2.5~15 μm波段的反射光谱, 结合Kramers-Kronig(K-K)关系计算了生物材料8~14 μm波段的复折射率。利用团簇-团簇模型模拟了不同分形维数的生物凝聚粒子的空间结构, 通过离散偶极子近似法计算了具有分形特征的生物凝聚粒子在远红外波段的消光参量, 并求出不同条件下生物凝聚粒子的质量消光系数。结果表明: 在远红外波段内,相同原始微粒数生物凝聚粒子的分形维数越大, 其消光性能越好, 当生物凝聚粒子的原始微粒数为50, 分形维数为2.00, 质量密度为1 120 kg/m3时, 质量消光系数最大可达到2.262 m2/g, 且凝聚粒子的质量消光系数随着原始微粒半径的增大而缓慢增大。
Abstract
The spectral reflectance of biological material FANS 233D in the band of 2.5-15 μm was recorded by using infrared microscopic spectrometer. Based on Kramersd-Kronig(K-K) relationship, the complex refractive index of the material in 8-14 μm was calculated. A cluster-cluster model was used to stimulate the spatial structure of FANS 233D biological aggregated particles with different fractal dimensions. The extinction parameters of biological aggregated particles with fractal dimension in the far infrared band were calculated by discrete dipole approximation and the mass extinction coefficient was calculated under different conditions. The results indicate that the larger the fractal dimension of biological aggregated particles with the same original particle, the better the extinction performance in the far infrared band. When the value of original particle number, fractal dimension, mass density was 50, 2.00, 1 120 kg/m3 respectively, the mass extinction coefficient in the 8-14 μm band can reach 2.262 m2/g. The mass extinction coefficient of the aggregated particles increases slowly with the increase of the original particle radius.
参考文献

[1] Gu Youlin, Hu Yihua, Chen Xi, et al. Combined analysis of static and dynamic extinction characteristics of microbial spores and mycelia as a mid-infrared extinction material[J]. Optics Communications, 2018.

[2] Wang Peng, Liu Hongxia, Zhao Yizheng, et al. Electromagnetic attenuation characteristics of microbial materials in the infrared band[J]. Applied Spectroscopy, 2016, 70(9): 1456-1463.

[3] Tuminello P S, Arakawa E T, Khare B N ,et al. Optical properties of Bacillus subtilis spores from 0.2-2.5 μm[J]. Applied Optics, 1957, 36(3): 2818-2824.

[4] KFA R, Billing E. The water and solid content of living bacterial spores and vegetative cells as indicated by refractive index measurement[J]. Journal of General Microbiology, 1997, 16(2): 418-525.

[5] 孙杜娟, 胡以华, 王勇, 等. 微生物远红外波段复折射率测定及模型构建[J]. 物理学报,2013, 62(9): 094218.

    Sun Dujuan, Hu Yihua, Wang Yong, et al. Determination and model construction of microbes′ complex refractive index in far infrared band[J]. Acta Physica Sinica, 2013, 62(9): 094218. (in Chinese)

[6] Chicea D, Turcu I. RWMCS-An alternative random walk Monte Carlo code to simulate light scattering in bioligical suspensions[J]. Optik-International Journal for Light and Electron Optics, 2007, 118(5): 232-236.

[7] Gu Youlin, Hu Yihua, Chen Xi, et al. Discrimination of viable and dead microbial materials with Fourier transform infrared spectroscopy in 3-5 micrometers[J]. Optics Express, 2018, 26(12): 15842-15850.

[8] 顾有林, 王成, 杨丽,等. 黑曲霉孢子灭活前后红外消光特性[J]. 红外与激光工程, 2015, 44(1): 36-41.

    Gu Youlin, Wang Cheng, Yang Li, et al. Infrared extinction before and after aspergillus niger spores inactivation[J]. Infrared and Laser Engineering, 2015, 44(1): 36-41. (in Chinese)

[9] 李辉, 谢树森, 林磊, 等. 生物组织的可见光与近红外光散射模型[J]. 光学学报, 1999, 19(12): 1661-1666.

    Li Hui, Xie Shusen, Lin Lei, et al. A new model of the light scattering in biological tissue for visible and near infrared region[J]. Acta Optica Sinica, 1999, 19(12):1661-1666. (in Chinese)

[10] Gurton K P, Ligon D A, Kvavilashvili R. Measured infrared spectral extinction for aerosolized Bacillus subtilis var. Niger endospores from 3 to 13 μm[J]. Applied Optics, 2001, 40(25): 4444.

[11] 顾有林, 曹光华, 胡以华, 等. 生物材料紫外红外复合消光性能[J]. 红外与激光工程, 2018, 47(3): 0321003.

    Gu Youlin, Cao Guanghua, Hu Yihua, et al. Measurement of ultraviolet and Infrared composite extinction performance of biological materials[J]. Infrared and Laser Engineering, 2018, 47(3): 0321003. (in Chinese)

[12] Drezek R, Dunn A, Kortum R. A pulsed finite-difference time-domain (FDTD) method for calculating light scattering from biological cells over broad wavelength ranges[J]. Optics Express, 2000, 6(7): 147.

[13] Kalashnikov M, Choi W, Hunter M, et al. Assessing the contribution of cell body and intracellular organelles to the backward light scattering[J]. Optics Express, 2012, 20(2): 816.

[14] Bronk B V, Reinisch L. Variability of steady-state bacterial fluorescence with respect to growth conditions [J]. Applied Spectroscopy, 1993, 47(4): 436-440.

[15] 孙杜娟, 胡以华, 王勇, 等. 生物细胞亚显微结构对光散射特性的影响[J]. 光子学报, 2013, 42(6): 710-714.

    Sun Dujuan, Hu Yihua, Wang Yong, et al. Sub-microstructures′ influences on cell′s scattering prosperities [J]. Acta Photonica Sinica, 2013, 42(6): 710-714. (in Chinese)

[16] 冯春霞, 黄立华, 周光超, 等. 单分散生物气溶胶光散射特性的计算与分析[J]. 中国激光, 2010, 37(10): 2592-2598.

    Feng Chunxia, Huang Lihua, Zhou Guangchao, et al. Computation and analysis of light scattering by monodisperse biological aerosols[J]. Chinese Journal of Lasers, 2010, 37(10): 2592-2598. (in Chinese)

[17] 赵欣颖, 胡以华, 顾有林, 等. 微生物凝聚粒子群的激光透射率研究[J]. 光学学报, 2015, 35(6): 0616001.

    Zhao Xinying, Hu Yihua, Gu Youlin, et al. Transmittance of laser in the microorganism aggregated particle swarm[J]. Acta Optica Sinica, 2015, 35(6): 0616001. (in Chinese)

[18] Lucarini V, Saarinen J J, PeiponenK E, et al. KramersKronig Relations in Optical Meterials Research [M]. Berlin, Heidelberg: Springer-Verlag, 2005: 9-25.

[19] Gu Youlin, Hu Yihua, Chen Xi, et al. Determination of infrared complex refractive index of microbial materials[J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2018, 217: 305-314.

[20] Lattuada M, Wu H, Morbidelli M. Radial density distribution of fractal clusters[J]. Chemical Engineering Science, 2004, 59(21): 4401-4413.

[21] 谢云霞, 罗文峰, 李后强. 大气颗粒物的分形特征[J]. 世界科技研究与发展, 2004, 26(6): 24-29.

    Xie Yunxia, Luo Wenfeng, Li Houqiang. Fractal characteristic of atmospheric particulate matters[J]. World Sci-Tech R & D, 2004, 26(6): 24-29. (in Chinese)

[22] 黄朝军, 吴振森, 刘亚锋, 等. 孔隙率对气溶胶凝聚粒子光学特性的影响[J]. 光学学报, 2013, 33(1): 0129001.

    Huang Chaojun, Wu Zhensen, Liu Yafeng, et al. Effect of porosity on optical properties of aerosol aggregate particals[J]. Acta Optica Sinica, 2013, 33(1): 0129001. (in Chinese)

[23] Draine B T. The discrete-dipole approximation and its application to interstellar graphite grains[J]. Astrophysical Journal, 1988, 333(333): 848-872.

[24] 李乐, 胡以华, 顾有林, 等. 黑曲霉孢子红外波段消光性能研究[J]. 红外与激光工程, 2014, 43(7): 2175-2179.

    Li Le, Hu Yihua, Gu Youlin, et al. Infrared extinction performance of Aspergillus niger spores[J]. Infrared and Laser Engineering, 2014, 43(7): 2175-2179. (in Chinese)

陈曦, 胡以华, 顾有林, 赵欣颖, 王新宇. 生物凝聚粒子远红外波段消光特性[J]. 红外与激光工程, 2019, 48(7): 0704002. Chen Xi, Hu Yihua, Gu Youlin, Zhao Xinying, Wang Xinyu. Extinction characteristics of biological aggregated particles in the far infrared band[J]. Infrared and Laser Engineering, 2019, 48(7): 0704002.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!