光学学报, 2014, 34 (3): 0322005, 网络出版: 2014-01-23   

大口径光学系统时在轨调整补偿能力

On-Orbit Adjustment and Compensation for Large Aperture Optical System
作者单位
北京空间机电研究所, 北京 100076
摘要
随着航天遥感需求的不断提高,光学遥感器的口径越来越大,光学元件的支撑和重力变形对光学系统的影响难以消除,因此需要在轨调整光学元件位置变量,来补偿主镜面形误差引起的系统光学性能的下降。以一个大口径同轴三反射式光学系统为例,在理论上分析了次镜的倾斜、偏心和轴向位置引起的初级像差的变化,得出次镜的在轨补偿能力。利用Zernike多项式模拟主镜面形误差,通过调整次镜的位置自由度,分别补偿主镜的球差、彗差和像散,给出了仿真结果,并进行了工程可实现性分析。结果表明,次镜的位置自由度调整能够补偿主镜的彗差,并能够补偿一定量的像散,但是只能补偿小量球差。
Abstract
With the uprating requirements of space remote sensing, the aperture of the remote sensor is getting larger and larger. The influences of both the support of optical elements and gravity deformation on the optical system are difficult to conquer. Therefore, it is necessary to compensate the descending optical performance which is caused by the surface error of the primary mirror by means of adjusting the position parameters of the optical elements on-orbit. A large aperture coaxial three-mirror optical system is introduced. The variation of primary aberrations caused by tilting, off-centering and varying of axial position of the secondary mirror are theoretically analysed. The on-orbit compensation ability of the secondary mirror is deduced consequently. Zernike polynomials are used to simulate the surface error of the primary mirror. The spherical aberration, coma and the astigmatism of the primary mirror are compensated respectively by adjusting the positional freedoms of the secondary mirror, which are proved by both simulation results and feasibility analysis. The results show that the adjustment of the positional freedoms of the secondary mirror can compensate both the coma and some astigmatism of the primary mirror, but a little spherical aberration.
参考文献

[1] 胡君, 王栋, 孙天宇. 现代航天光学成像遥感器的应用与发展[J]. 中国光学与应用光学, 2010, 3(6): 519-532.

    Hu Jun, Wang Dong, Sun Tianyu. Application and development of recent space opticalimaging remote sensors [J]. Chinese J Optics and Applied Optics, 2010, 3(6): 519-532.

[2] 钟显云, 范斌, 曾志革, 等. Φ1.8 m轻质镜能动磨盘技术抛光的柔性限位支撑设计仿真与优化[J]. 光学学报, 2012, 32(3): 0322002.

    Zhong Xianyun, Fan Bin, Zeng Zhige, et al.. Design simulation and optimization for the flexible displacement support structure based on Φ1.8 m lightweight reflector [J]. Acta Optica Sinica, 2012, 32(3): 0322002.

[3] 梁巍. 美国照相侦察卫星系统现状[J]. 国际太空, 2000, 10: 1-3.

    Liang Wei. America reconnaissance camera present state [J]. International Space, 2000, 10: 1-3.

[4] 庞志海, 樊学武, 陈钦芳, 等. 大口径反射镜面形误差对光学系统像差特性时影响[J]. 光学学报, 2013, 33(4): 0422002.

    Pang Zhihai, Fan Xuewu, Chen Qinfang, et al.. Influence of surface-profile error of larger mirror on aberrations characteristics of optical system [J]. Acta Optica Sinica, 2013, 33(4): 0422002.

[5] 陈晓丽, 王彬, 杨秉新. 大口径超轻型反射镜定位和支撑方案研究[J]. 航天返回与遥感, 2010, 31(3): 15-20.

    Chen Xiaoli, Wang Bin, Yang Bingxin. Study of positioning and mounting scheme of large aperture ultra-light space reflector [J]. Spacecraft Recovery and Remote Sensing, 2010, 31(3): 15-20.

[6] 樊延超, 柴方茂, 李志来, 等. 大口径光学遥感器主反射镜轻量化方案设计[J]. 光电工程, 2012, 39(8): 123-134.

    Fan Yanchao, Chai Fangmao, Li Zhilai, et al.. Lightweight design of primary mirror with large aperture for optical remote sensor [J]. Opto-Electronic Engineering, 2012, 39(8): 123-134.

[7] 陈杨, 王跃明. 大像场离轴三反望远镜畸变特性分析与设计 [J]. 光学学报, 2013, 33(2): 0222003.

    Chen Yang, Wang Yueming. Design and distortion characteristics analysis of the large-image-field off-axis three-mirror telescope [J]. Acta Optica Sinica, 2013, 33(2): 0222003.

[8] Zhang Yimo. Applied Optics [M]. Beijing: Publishing House of Electronics Industry, 2008.

刘剑峰, 王慧军, 孙德伟, 李博, 周峰. 大口径光学系统时在轨调整补偿能力[J]. 光学学报, 2014, 34(3): 0322005. Liu Jianfeng, Wang Huijun, Sun Dewei, Li Bo, Zhou Feng. On-Orbit Adjustment and Compensation for Large Aperture Optical System[J]. Acta Optica Sinica, 2014, 34(3): 0322005.

本文已被 2 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!