中国激光, 2019, 46 (5): 0508012, 网络出版: 2019-11-11   

高功率光纤飞秒激光放大器的研究现状与发展趋势 下载: 3496次

Research Status and Development Trend of High Power Femtosecond Fiber Laser Amplifiers
作者单位
天津大学精密仪器与光电子工程学院超快激光研究室&光电信息技术教育部重点实验室, 天津 300072
引用该论文

闫东钰, 刘博文, 宋寰宇, 李源, 储玉喜, 柴路, 胡明列, 王清月. 高功率光纤飞秒激光放大器的研究现状与发展趋势[J]. 中国激光, 2019, 46(5): 0508012.

Dongyu Yan, Bowen Liu, Huanyu Song, Yuan Li, Yuxi Chu, Lu Chai, Minglie Hu, Chingyue Wang. Research Status and Development Trend of High Power Femtosecond Fiber Laser Amplifiers[J]. Chinese Journal of Lasers, 2019, 46(5): 0508012.

参考文献

[1] König J, Nolte S, Tünnermann A. Plasma evolution during metal ablation with ultrashort laser pulses[J]. Optics Express, 2005, 13(26): 10597-10607.

[2] Schaffer C B, Brodeur A, García J F, et al. Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy[J]. Optics Letters, 2001, 26(2): 93-95.

[3] Cingöz A, Yost D C, Allison T K, et al. Direct frequency comb spectroscopy in the extreme ultraviolet[J]. Nature, 2012, 482(7383): 68-71.

[4] Pask H M, Carman R J, Hanna D C, et al. Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 μm region[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1995, 1(1): 2-13.

[5] Fermann M E, Hartl I. Ultrafast fiber laser technology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 191-206.

[6] LimpertJ, LiemA, ZellmerH, et al. High-average-power millijoule fiber amplifier system[C]∥Summaries of Papers Presented at the Lasers and Electro-Optics, CLEO'02, Technical Diges, May 24-24, 2002, Long Beach, CA, USA. New York: IEEE, 2002: 591- 592.

[7] Strickland D, Mourou G. Compression of amplified chirped optical pulses[J]. Optics Communications, 1985, 56(3): 219-221.

[8] Galvanauskas A, Blixt P. Tellefsen J A Jr. Generation of femtosecond optical pulses with nanojoule energy from a diode laser and fiber based system[J]. Applied Physics Letters, 1993, 63(13): 1742-1744.

[9] Cho GC, GalvanauskasA, Fermann ME, et al. 100 μJ and 5.5 W Yb-fiber femtosecond chirped pulse amplifier system[C]∥Conference on Lasers and Electro-Optics (CLEO 2000), Technical Digest, Postconference Edition, May 7-12, 2000, San Francisco, CA, USA. New York: IEEE, 2000: 118.

[10] Maurer R D. Optical waveguide light source: US3808549[P].1972-03-30. https:∥patents.google.com/patent/US3808549A/en.

[11] Jauregui C, Limpert J, Tünnermann A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867.

[12] Richardson D J, Nilsson J, Clarkson W A. High power fibre lasers: current status and future perspectives[J]. Journal of the Optical Society of America B, 2010, 27(11): B63-B92.

[13] Koplow J P. Kliner D A V, Goldberg L. Single-mode operation of a coiled multimode fibre amplifier[J]. Optics Letters, 2000, 25(7): 442-444.

[14] Marciante J R. Gain filtering for single-spatial-mode operation of large-mode-area fibre amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 30-36.

[15] Knight J C, Birks T A. Russell P S J, et al. All-silica single-mode optical fiber with photonic crystal cladding[J]. Optics Letters, 1996, 21(19): 1547-1549.

[16] 柴路, 胡明列, 方晓惠, 等. 光子晶体光纤飞秒激光技术研究进展[J]. 中国激光, 2013, 40(1): 0101001.

    Chai L, Hu M L, Fang X H, et al. Advances in femtosecond laser technologies with photonic crystal fibers[J]. Chinese Journal of Lasers, 2013, 40(1): 0101001.

[17] Limpert J, Schreiber T, Nolte S, et al. All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber[J]. Optics Express, 2003, 11(24): 3332-3337.

[18] Röser F, Schimpf D, Schmidt O, et al. 90 W average power 100 μJ energy femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 2007, 32(15): 2230-2232.

[19] Eidam T, Hanf S, Seise E, et al. Femtosecond fiber CPA system emitting 830 W average output power[J]. Optics Letters, 2010, 35(2): 94-96.

[20] Limpert J, Deguil-Robin N, Manek-Hönninger I, et al. High-power rod-type photonic crystal fiber laser[J]. Optics Express, 2005, 13(4): 1055-1058.

[21] Limpert J, Schmidt O, Rothhardt J, et al. Extended single-mode photonic crystal fiber lasers[J]. Optics Express, 2006, 14(7): 2715-2720.

[22] Teodoro F D, Hemmat M K, Morais J, et al. High peak power operation of a 100μm-core Yb-doped rod-type photonic crystal fibre amplifier[J]. Proceedings of SPIE, 2010, 7580: 758006.

[23] Wan P, Yang L M, Liu J. All fiber-based Yb-doped high energy, high power femtosecond fiber lasers[J]. Optics Express, 2013, 21(24): 29854-29859.

[24] Röser F, Eidam T, Rothhardt J, et al. Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system[J]. Optics Letters, 2007, 32(24): 3495.

[25] Stutzki F, Jansen F, Otto H J, et al. Designing advanced very-large-mode-area fibers for power scaling of fiber-laser systems[J]. Optica, 2014, 1(4): 233.

[26] Liu CH, Chang GQ, LitchinitserN, et al. Chirally coupled core fibers at 1550-nm and 1064-nm for effectively single-mode core size scaling[C]∥2007 Conference on Lasers and Electro-Optics (CLEO), May 6-11, 2007, Baltimore, MD, USA. New York: IEEE.2007: 1- 2.

[27] Ma X Q, Zhu C, Hu I N, et al. Single-mode chirally-coupled-core fibers with larger than 50 μm diameter cores[J]. Optics Express, 2014, 22(8): 9206.

[28] Ma X Q, Hu I N, Galvanauskas A. Propagation-length independent SRS threshold in chirally-coupled-core fibers[J]. Optics Express, 2011, 19(23): 22575-22581.

[29] Hu IN, MaX, ZhuC, et al. Experimental demonstration of SRS suppression in chirally-coupled-core fibers[C]∥Advanced Solid State Lasers 2012, Jan. 29-Feb. 1, 2012, San Diego, California, USA. Washington D C: OSA, 2012: AT1A. 3.

[30] Wong W S, Peng X. McLaughlin J M, et al. Breaking the limit of maximum effective area for robust single-mode propagation in optical fibers[J]. Optics Letters, 2005, 30(21): 2855-2857.

[31] Dong L. McKay H A, Fu L B, et al. Ytterbium-doped all glass leakage channel fibers with highly fluorine-doped silica pump cladding[J]. Optics Express, 2009, 17(11): 8962-8969.

[32] Alkeskjold T T, Laurila M, Scolari L, et al. Single-mode ytterbium-doped large-mode-area photonic bandgap rod fiber amplifier[J]. Optics Express, 2011, 19(8): 7398-7409.

[33] Jansen F, Stutzki F, Otto H J, et al. The influence of index-depressions in core-pumped Yb-doped large pitch fibers[J]. Optics Express, 2010, 18(26): 26834-26842.

[34] LimpertJ. Large-pitch fibers: pushing very large mode areas to highest powers[C]∥ 2012 International Conference on Fiber Optics and Photonics, Dec. 9-12, 2012, Chennai, India. Washington D C: OSA, 2012: T2A. 1.

[35] Limpert J, Stutzki F, Jansen F, et al. Yb-doped large-pitch fibres: effective single-mode operation based on higher-order mode delocalisation[J]. Light: Science & Applications, 2012, 1(4): e8.

[36] Eidam T, Rothhardt J, Stutzki F, et al. Fiber chirped-pulse amplification system emitting 3.8 GW peak power[J]. Optics Express, 2011, 19(1): 255-260.

[37] Peng X, Kim K, Mielke M, et al. Higher-order mode fiber enables high energy chirped-pulse amplification[J]. Optics Express, 2013, 21(26): 32411-32416.

[38] Ramachandran S, Nicholson J W, Ghalmi S, et al. Light propagation with ultralarge modal areas in optical fibers[J]. Optics Letters, 2006, 31(12): 1797.

[39] AgrawalG. Nonlinear fiber optics[M]. 4th Edition, New York: Academic Press, 2007.

[40] Anderson D, Desaix M, Karlsson M, et al. Wave-breaking-free pulses in nonlinear-optical fibers[J]. Journal of the Optical Society of America B, 1993, 10(7): 1185-1190.

[41] SungH, HwangJ, Kim JH, et al. Investigations on pulse stretchers for chirped pulse amplification system[C]∥17th Opto-Electronics and Communications Conference, July 2-6, 2012, Busan, South Korea. New York: IEEE, 2012: 576- 577.

[42] 孙大睿, 宋晏蓉, 张志刚, 等. 用于飞秒脉冲放大器的马丁内兹展宽器与欧浮纳展宽器性能比较[J]. 物理学报, 2003, 52(4): 870-874.

    Sun D R, Song Y R, Zhang Z G, et al. Compare of characteristics between Martinez and Offner stretchers used in chirped pulse amplifier[J]. Acta Physica Sinica, 2003, 52(4): 870-874.

[43] Shah L, Fermann M. High-power ultrashort-pulse fiber amplifiers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(3): 552-558.

[44] Kane S, Squier J. Grating compensation of third-order material dispersion in the normal dispersion regime: sub-100-fs chirped-pulse amplification using a fiber stretcher and grating-pair compressor[J]. IEEE Journal of Quantum Electronics, 1995, 31(11): 2052-2057.

[45] Kuznetsova L, Wise F W, Kane S, et al. Chirped-pulse amplification near the gain-narrowing limit of Yb-doped fiber using a reflection grism compressor[J]. Applied Physics B, 2007, 88(4): 515-518.

[46] Chauhan V, Bowlan P, Cohen J, et al. Single-diffraction-grating and grism pulse compressors[J]. Journal of the Optical Society of America B, 2010, 27(4): 619-624.

[47] Grüner-Nielsen L, Jakobsen D, Jespersen K G, et al. A stretcher fiber for use in fs chirped pulse Yb amplifiers[J]. Optics Express, 2010, 18(4): 3768-3773.

[48] 郝静宇, 刘博文, 宋寰宇, 等. 基于三阶色散补偿的光纤飞秒激光放大系统[J]. 激光与光电子学进展, 2018, 55(5): 051404.

    Hao J Y, Liu B W, Song H Y, et al. Femtosecond fiber amplification system based on third-order dispersion compensation technique[J]. Laser & Optoelectronics Progress, 2018, 55(5): 051404.

[49] Mortag D, Theeg T, Hausmann K, et al. Sub-200 fs microjoule pulses from a monolithic linear fiber CPA system[J]. Optics Communications, 2012, 285(5): 706-709.

[50] Song H Y, Liu B W, Wen L, et al. Optimization of nonlinear compensation in a high-energy femtosecond fiber CPA system by negative TOD fiber[J]. IEEE Photonics Journal, 2017, 9(2): 1-10.

[51] Meltz G, Morey W W, Glenn W H. Formation of Bragg gratings in optical fibers by a transverse holographic method[J]. Optics Letters, 1989, 14(15): 823-825.

[52] Galvanauskas A, Fermann M E, Harter D, et al. All-fiber femtosecond pulse amplification circuit using chirped Bragg gratings[J]. Applied Physics Letters, 1995, 66(9): 1053-1055.

[53] Zeludevicius J, Danilevicius R, Regelskis K. Optimization of pulse compression in a fiber chirped pulse amplification system by adjusting dispersion parameters of a temperature-tuned chirped fiber Bragg grating stretcher[J]. Journal of the Optical Society of America B, 2015, 32(5): 812-817.

[54] Poletti F, Petrovich M N, Richardson D J. Hollow-core photonic bandgap fibers: technology and applications[J]. Nanophotonics, 2013, 2(5/6): 315-340.

[55] Bouwmans G, Luan F, Knight J C, et al. Properties of hollow-core photonic bandgap fiber at 850 nm wavelength[J]. Optics Express, 2003, 11(14): 1613-1620.

[56] GalvanauskasA, HeaneyA, ErdoganT, et al. Use of volume chirped Bragg gratings for compact high-energy chirped pulse amplification circuits[C]∥Technical Digest. Summaries of Papers Presented at the Conference on Lasers and Electro-Optics, May 3-8, 1998, San Francisco, CA, USA. New York: IEEE1998: 362.

[57] Efimov OM, Glebov LB, Smirnov VI, et al. Process for production of high efficiency volume diffractive elements in photo-thermo-refractive glass:US6586141[P]. 2000-01-04. https:∥patents.google.com/patent/US6586141B1/en.

[58] Glebov L B, Smirnov V, Rotari E, et al. Volume-chirped Bragg gratings: monolithic components for stretching and compression of ultrashort laser pulses[J]. Optical Engineering, 2014, 53(5): 051514.

[59] Glebov LB, Glebova LN, Smirnov VI. Laser damage resistance of photo-thermo-refractive glass Bragg gratings[R]. Orlando: University of Central Florida,College of Optics and Photonics, 2004.

[60] Sun R Y, Jin D C, Tan F Z, et al. High-power all-fiber femtosecond chirped pulse amplification based on dispersive wave and chirped-volume Bragg grating[J]. Optics Express, 2016, 24(20): 22806-22812.

[61] Sanchez D, Biegert J, Matras G, et al. High energy high repetition rate compact picosecond Holmium YLF laser for mid-IR OPCPA pumping[J]. Proceedings of SPIE, 2017, 10082: 100820N.

[62] Chang G, Rever M, Smirnov V, et al. Femtosecond Yb-fiber chirped-pulse-amplification system based on chirped-volume Bragg gratings[J]. Optics Letters, 2009, 34(19): 2952-2954.

[63] Bartulevi ius T, Frankinas S, Michailovas A, et al. . Compact fiber CPA system based on a CFBG stretcher and CVBG compressor with matched dispersion profile[J]. Optics Express, 2017, 25(17): 19856-19862.

[64] Bartulevi ius T, VeselisL, MadeikisK, et al. Compact high energy femtosecond fiber laser with a CFBG stretcher and CVBG compressor[C]∥2018 International Conference Laser Optics (ICLO), June 4-8, 2018, St. Petersburg, Russia. Washington D C: OSA, 2018: 17.

[65] GalvanauskasA. Ultrashort-pulse fiber amplifiers[M] ∥Galvanauskas A. eds. Ultrafast Lasers. New York: CRC Press, 2002.

[66] Shah L, Liu Z, Hartl I, et al. High energy femtosecond Yb cubicon fiber amplifier[J]. Optics Express, 2005, 13(12): 4717-4722.

[67] Kalaycioglu H, Oktem B, Şenel C, et al. Microjoule-energy, 1 MHz repetition rate pulses from all-fiber-integrated nonlinear chirped-pulse amplifier[J]. Optics Letters, 2010, 35(7): 959.

[68] 文亮, 刘博文, 宋寰宇, 等. 高功率、高质量全保偏光纤飞秒激光放大系统[J]. 中国激光, 2017, 44(2): 0201011.

    Wen L, Liu B W, Song H Y, et al. All polarization-maintaining fiber amplification system to generate high-power and high-quality femtosecond laser pulses[J]. Chinese Journal of Lasers, 2017, 44(2): 0201011.

[69] Chen H W, Lim J, Huang S W, et al. Optimization of femtosecond Yb-doped fiber amplifiers for high-quality pulse compression[J]. Optics Express, 2012, 20(27): 28672.

[70] Lim J, Chen H W, Chang G, et al. Frequency comb based on a narrowband Yb-fiber oscillator: pre-chirp management for self-referenced carrier envelope offset frequency stabilization[J]. Optics Express, 2013, 21(4): 4531.

[71] Liu W, Schimpf D N, Eidam T, et al. Pre-chirp managed nonlinear amplification in fibers delivering 100 W, 60 fs pulses[J]. Optics Letters, 2015, 40(2): 151-154.

[72] Song H Y, Liu B W, Li Y, et al. Practical 24-fs, 1-μJ, 1-MHz Yb-fiber laser amplification system[J]. Optics Express, 2017, 25(7): 7559.

[73] Hua Y, Chang G, Kärtner F X, et al. Pre-chirp managed, core-pumped nonlinear PM fiber amplifier delivering sub-100-fs and high energy (10 nJ) pulses with low noise[J]. Optics Express, 2018, 26(5): 6427-6438.

[74] Tamura K, Nakazawa M. Pulse compression by nonlinear pulse evolution with reduced optical wave breaking in erbium-doped fiber amplifiers[J]. Optics Letters, 1996, 21(1): 68-70.

[75] Fermann M E, Kruglov V I, Thomsen B C, et al. Self-similar propagation and amplification of parabolic pulses in optical fibers[J]. Physical Review Letters, 2000, 84(26): 6010-6013.

[76] Deng Y J, Chien C Y, Fidric B G, et al. Generation of sub-50 fs pulses from a high-power Yb-doped fiber amplifier[J]. Optics Letters, 2009, 34(22): 3469-3471.

[77] Wang S J, Liu B W, Gu C L, et al. Self-similar evolution in a short fiber amplifier through nonlinear pulse preshaping[J]. Optics Letters, 2013, 38(3): 296-298.

[78] Zhao J, Li W X, Wang C, et al. Pre-chirping management of a self-similar Yb-fiber amplifier towards 80 W average power with sub-40 fs pulse generation[J]. Optics Express, 2014, 22(26): 32214.

[79] Liu Y, Li W X, Luo D P, et al. Generation of 33 fs 935 W average power pulses from a third-order dispersion managed self-similar fiber amplifier[J]. Optics Express, 2016, 24(10): 10939.

[80] Wang S J, Chen W, Qin P, et al. Spectral and temporal breathing self-similar evolution in a fiber amplifier for low-noise transform-limited pulse generation[J]. Optics Letters, 2016, 41(22): 5286-5289.

[81] Finot C, Provost L, Petropoulos P, et al. Parabolic pulse generation through passive nonlinear pulse reshaping in a normally dispersive two segment fiber device[J]. Optics Express, 2007, 15(3): 852-864.

[82] Pierrot S, Salin F. Amplification and compression of temporally shaped picosecond pulses in Yb-doped rod-type fibers[J]. Optics Express, 2013, 21(17): 20484-20496.

[83] Fu W, Tang Y X. McComb T S, et al. Limits of femtosecond fiber amplification by parabolic pre-shaping[J]. Journal of the Optical Society of America B, 2017, 34: A37-A42.

[84] Takada H, Torizuka K. Design and construction of a TW-class 12-fs Ti: sapphire chirped-pulse amplification system[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(2): 201-212.

[85] Chiba Y, Takada H, Torizuka K, et al. 65-fs Yb-doped fiber laser system with gain-narrowing compensation[J]. Optics Express, 2015, 23(5): 6809-6814.

[86] Takada H, Chiba Y, Yoshitomi D, et al. 41-fs, 35-nJ, green pulse generation from a yb-doped fiber laser system[J]. Optics Express, 2017, 25(3): 2115-2120.

[87] Gonthier F, Martineau L, Azami N, et al. High-power all-fiber components: the missing link for high-power fiber lasers[J]. Proceedings of SPIE, 2004, 5335: 266-276.

[88] Mukhopadhyay P K, Ozgoren K, Budunoglu I L, et al. All-fiber low-noise high-power femtosecond Yb-fiber amplifier system seeded by an all-normal dispersion fiber oscillator[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 145-152.

[89] Fan T Y. Laser beam combining for high-power, high-radiance sources[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2005, 11(3): 567-577.

[90] Daniault L, Hanna M, Lombard L, et al. Coherent beam combining of two femtosecond fiber chirped-pulse amplifiers[J]. Optics Letters, 2011, 36(5): 621.

[91] Klenke A, Hädrich S, Eidam T, et al. 22 GW peak-power fiber chirped-pulse- amplification system[J]. Optics Letters, 2014, 39(24): 6875-6878.

[92] Müller M, Kienel M, Klenke A, et al. 1 kW 1 mJ eight-channel ultrafast fiber laser[J]. Optics Letters, 2016, 41(15): 3439.

[93] Müeller M, Klenke A, Stark Henning, et al. 1.8-kW 16-channel ultrafast fiber laser system[J]. Proceedings of SPIE, 2018, 10512: 1051208.

[94] HeilmannA, Dortz JLe, Bellanger, et al. Towards coherent combination of 61 fiber amplifiers[C]∥Laser Congress2017 ( ASSL, LAC), OSA Technical Digest, Oct. 1-5, 2017, Nagoya, Japan. Washington D C: OSA:JM5A. 14.

[95] Knight JC, Birks TA, ManganJ, et al. Multicore photonic crystal fibres[C]∥Technical Digest, Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference, May 23-28, 1992, Baltimore, MD, USA. New York: IEEE, 1992: 6496555.

[96] Otto H J, Klenke A, Jauregui C, et al. Scaling the mode instability threshold with multicore fibers[J]. Optics Letters, 2014, 39(9): 2680.

[97] Fang X H, Hu M L, Liu B W, et al. Generation of 150 MW, 110 fs pulses by phase-locked amplification in multicore photonic crystal fiber[J]. Optics Letters, 2010, 35(14): 2326-2328.

[98] Michaille L, Bennett C R, Taylor D M, et al. Multicore photonic crystal fiber lasers for high power/energy applications[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15: 328-336.

[99] Huang L L, Hu M L, Fang X H, et al. Generation of 110-W sub-100-fs pulses at 100 MHz by nonlinear amplification based on multicore photonic crystal fiber[J]. IEEE Photonics Journal, 2016, 8(3): 1-7.

[100] Zhou T, Sano T, Wilcox R. Coherent combination of ultrashort pulse beams using two diffractive optics[J]. Optics Letters, 2017, 42(21): 4422-4425.

[101] Zhou T, Du Q, Sano T, et al. Two-dimensional combination of eight ultrashort pulsed beams using a diffractive optic pair[J]. Optics Letters, 2018, 43(14): 3269-3272.

[102] Zhou SA, Ouzounov DG, Wise FW. Divided-pulse amplification of ultrashort pulses[C]∥2007 Conference on Lasers and Electro-Optics (CLEO), May 6-11, 2007, Baltimore, MD, USA. Washington D C: OSA, 2007: 1- 2.

[103] Hanna M, Guichard F, Zaouter Y, et al. Coherent combination of ultrafast fiber amplifiers[J]. Journal of Physics B, 2016, 49(6): 062004.

[104] Kong L J, Zhao L M, Lefrancois S, et al. Generation of megawatt peak power picosecond pulses from a divided-pulse fiber amplifier[J]. Optics Letters, 2012, 37(2): 253.

[105] Zaouter Y, Guichard F, Daniault L, et al. Femtosecond fiber chirped- and divided-pulse amplification system[J]. Optics Letters, 2013, 38(2): 106.

[106] Kienel M, Müller M, Klenke A, et al. Multidimensional coherent pulse addition of ultrashort laser pulses[J]. Optics Letters, 2015, 40(4): 522.

[107] Kienel M, Müller M, Klenke A, et al. 12 mJ kW-class ultrafast fiber laser system using multidimensional coherent pulse addition[J]. Optics Letters, 2016, 41(14): 3343.

[108] Limpert J, Klenke A, Kienel M, et al. Performance scaling of ultrafast laser systems by coherent addition of femtosecond pulses[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 268-277.

[109] 张志刚. 相干脉冲堆积:超越啁啾脉冲放大的新技术[J]. 激光与光电子学进展, 2017, 54(12): 120001.

    Zhang Z G. Coherent pulse stacking: an innovation beyond the chirped pulse amplification[J]. Laser & Optoelectronics Progress, 2017, 54(12): 120001.

[110] Breitkopf S, Eidam T, Klenke A, et al. A concept for multiterawatt fibre lasers based on coherent pulse stacking in passive cavities[J]. Light: Science & Applications, 2014, 3(10): e211.

[111] Breitkopf S, Wunderlich S, Eidam T, et al. Extraction of enhanced, ultrashort laser pulses from a passive 10-MHz stack-and-dump cavity[J]. Applied Physics B, 2016, 122(12): 297.

[112] Zhou T, Ruppe J, Zhu C, et al. Coherent pulse stacking amplification using low-finesse Gires-Tournois interferometers[J]. Optics Express, 2015, 23(6): 7442.

[113] RuppeJ, ChenS, SheikhsoflaM, et al. Multiplexed Coherent Pulse Stacking of 27 Pulses in a 4+1 GTI Resonator Sequence[C]∥2016 Advanced Solid State Lasers, Oct. 30-Nov. 3, 2016, Boston, MA,USA. Washington D C: OSA, 2016: AM4A. 6.

[114] PeiH, RuppeJ, ChenS, et al. 10 mJ energy extraction from Yb-doped 85m core CCC fiber using coherent pulse stacking amplification of fs pulses[C]∥Proceedings of 2017 Advanced Solid State Lasers Conference, Oct. 1-5, 2017, Nagoya, Japan. Washington D C: OSA, 2017: AW4A. 4.

[115] 王小林, 周朴, 粟荣涛, 等. 高功率光纤激光相干合成的现状、趋势与挑战[J]. 中国激光, 2017, 44(2): 0201001.

    Wang X L, Zhou P, Su R T. et al Current situation, tendency and challenge of coherent combining of high power fiber lasers[J]. Chinese Journal of Lasers, 2017, 44(2): 0201001.

[116] 王一礴, 李进延. 高功率掺镱光纤的现状及发展趋势[J]. 中国激光, 2017, 44(2): 0201009.

    Wang Y B, Li J Y. Status and development tendency of high power ytterbium doped fibers[J]. Chinese Journal of Lasers, 2017, 44(2): 0201009.

[117] Maxwell G, Ponting B, Gebremichael E, et al. Advances in single-crystal fibers and thin rods grown by laser heated pedestal growth[J]. Crystals, 2017, 7(1): 12.

[118] Markovic V, Rohrbacher A, Hofmann P, et al. 160 W 800 fs Yb∶YAG single crystal fiber amplifier without CPA[J]. Optics Express, 2015, 23(20): 25883-25888.

[119] Lesparre F, Gomes J T, Délen X, et al. Yb∶YAG single-crystal fiber amplifiers for picosecond lasers using the divided pulse amplification technique[J]. Optics Letters, 2016, 41(7): 1628-1631.

[120] Kuznetsov I, Mukhin I, Palashov O, et al. Thin-rod Yb∶YAG amplifiers for high average and peak power lasers[J]. Optics Letters, 2018, 43(16): 3941-3944.

[121] KuznetsovI, MukhinI, PerevesentsevE, et al. High average and peak power laser based on Yb∶YAG amplifiers of advanced geometries for OPCPA pumping[C]∥CLEO Pacific Rim Conference2018, OSA Technical Digest, July 29-Aug. 3, 2018, Hong Kong, China. Washington D C: OSA:Tu3A. 4.

[122] Kuznetsov I, Mukhin I, Palashov O, et al. Thin-tapered-rod Yb∶YAG laser amplifier[J]. Optics Letters, 2016, 41(22): 5361-5364.

[123] Nisoli M, de Silvestri S, Svelto O, et al. . Compression of high-energy laser pulses below 5 fs[J]. Optics Letters, 1997, 22(8): 522-524.

[124] Chen W, Song Y J, Jung K, et al. Few-femtosecond timing jitter from a picosecond all-polarization-maintaining Yb-fiber laser[J]. Optics Express, 2016, 24(2): 1347-1357.

[125] Song H Y, Liu B W, Chen W, et al. Femtosecond laser pulse generation with self-similar amplification of picosecond laser pulses[J]. Optics Express, 2018, 26(20): 26411-26421.

[126] Liu W, Li C, Zhang Z G, et al. Self-phase modulation enabled, wavelength-tunable ultrafast fiber laser sources: an energy scalable approach[J]. Optics Express, 2016, 24(14): 15328-15340.

[127] Mamyshev PV. All-optical data regeneration based on self-phase modulation effect[C]∥24th European Conference on Optical Communication. ECOC '98 (IEEE Cat. no.98TH8398), Sept. 20-24, 1998, Madrid, Spain. New York: IEEE, 1998: 475- 476.

[128] Fang Y C, Chaki T, Hung J H, et al. 1 MW peak-power subpicosecond optical pulse source based on a gain-switched laser diode[J]. Optics Letters, 2016, 41(17): 4028-4031.

[129] Fu W, Wright L G, Wise F W. High-power femtosecond pulses without a modelocked laser[J]. Optica, 2017, 4(7): 831-834.

闫东钰, 刘博文, 宋寰宇, 李源, 储玉喜, 柴路, 胡明列, 王清月. 高功率光纤飞秒激光放大器的研究现状与发展趋势[J]. 中国激光, 2019, 46(5): 0508012. Dongyu Yan, Bowen Liu, Huanyu Song, Yuan Li, Yuxi Chu, Lu Chai, Minglie Hu, Chingyue Wang. Research Status and Development Trend of High Power Femtosecond Fiber Laser Amplifiers[J]. Chinese Journal of Lasers, 2019, 46(5): 0508012.

本文已被 11 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!