红外与毫米波学报, 2014, 33 (1): 55, 网络出版: 2014-03-14  

W波段三次谐波回旋振荡管的模拟与设计

Simulation and design of a W-band third-harmonic gyrotron oscillator
作者单位
1 中国科学院电子学研究所,北京100190
2 中国科学院大学,北京100049
3 石家庄学院物理学系,河北 石家庄050035
4 北京大学信息科学技术学院,北京100871
摘要
研究了影响毫米波谐波回旋管互作用效率的多个因素, 通过采用三次谐波工作, 94GHz回旋管的工作磁场降低到了1.185T, 使采用永磁体取代超导磁体成为可能.利用自洽非线性计算和粒子模拟研究了回旋振荡管的注-波互作用过程, 发现了腔体品质因数与互作用效率的内在联系, 研究了工作电压和电子注横纵速率比对耦合强度的影响, 考虑了磁场渐变及电子注速度离散对互作用效率的影响, 通过选择合理的工作模式和系统参数, 当工作电压为40kV、工作电流为12 A、电子注横向速度离散为3%时获得了95kW的输出功率及19.7%的效率.当采用单级降压收集极后, 效率可以进一步提高到39.2%.
Abstract
Some key issues associated with the interaction efficiency of a harmonic gyrotron oscillator operating in the millimeter wave regions were studied. Operating at the third-harmonic, the required magnetic field was reduced to 1.185 T for a 94GHz gyrotron oscillator, which makes it possible to replace the superconducting magnet by a permanent magnet. A self-consistent code and a particle-in-cell(PIC) software were used to investigate the harmonic beam-wave interaction. The interplay between the cavity quality factor and interaction efficiency was revealed, and the dependence of both beam voltage and electron beam pitch factor on the coupling coefficient was also studied. Through carefully choosing operating mode, optimizing system parameters, and using linearly increased axial magnetic field, the output power of 95kW and efficiency of 19.7% was achieved under accelerating voltage of 40kV, beam current of 12 A, and transverse velocity spread of 3%. The efficiency can be further increased to 39. 2% by utilizing a single stage depressed collector(SDC).
参考文献

[1] Chu K R. The electron cyclotron master, Pre. Mod. Phys[J]. 2004, 76(2), 489-540.

[2] Kartikeyan M V, Borie E, Thumm M. Gyrotrons High-Power Microwave and Millimeter Wave Technology[M]. Germany, Springer, 2004.

[3] Nusinovich G S. Introduction to the Physics of Gyrotrons[M]. Maryland, Johns Hopkins University Press, 2004.

[4] Nitin Kumar, Udaybir Singh, Singh T. P., et al. A review on the applications of high power, high frequency microwave source: gyrotron. J Fusion Energy[J]. 2011, 30: 257-276.

[5] Vladimir Bratman, Mikhail Glyavin, Toshitaka Idehara, et al. Review of subterahertz and terahertz gyrodevices at IAP RAS and FIR FU, IEEE Trans Plasma Sci[J]. 2009, 37(1): 36-43.

[6] Bratman V L, Kalynov Yu K, Manuilov V N. Larg-orbit gyrotron operation in the terahertz frequency range, Physical Review Letters[J]. 2009, 102, 245101.

[7] Zavolsky N A, Zapevalov V E, MAlygin O V, et al. Optimization of the cavity of a second- cyroharmonic continuous-wave gyrotron with an operating frequency of 258GHzV, Radiophysics and Quantum Electronics[J]. 2009, 52(5-6); 379-385.

[8] Mikhail Yu Glyavin, Alexey G. Luchinin, Vladimir N. Manuilov, et al. Design of a subterahertz, third-harmonic continuous-wave gyrotron, IEEE Trans. Plasma Sci[J]. 2008, 36(3): 591-596.

[9] Idehara T, Tsuchiya H, Watanabe O, et al. The first experiment of a THz gyrotron with a pulse magnet, International Journal of Infrared and Millimeter Waves[J]. 2006, 27(3): 319-331.

[10] Toshitaka Idehara, Kosuke Kosuga, La Agusu, et al. Gyrotron FU CW Ⅶ for 300MHz and 600MHz DNP-NMR spectroscopy, J. Infrared Milli Terahz Waves[J]. 2010, 31: 763-774.

[11] Idehara T, Saito T, Ogawa I, et al. Development of Terahertz FU CW gyrotron series for DNP, Appl. Magn. Reson[J]. 2008, 34: 265-275.

[12] Antonio C. Torrezan, Seong-Tae Han, et al. Continuous-wave operation of a frequency-tunable 460-GHz second-harmonic gyrotron for enhanced nuclear magnetic resonance, IEEE Trans. Plasma Sci[J]. 2010, 38(6): 1150-1159.

[13] Fu Wenjie, Yan yang, Li xiaoyun, et al. Generating 0.42 THz radiation from a second harmonic gyrotron, Chinese Science Bulletin[J]. 2011, 56(33): 3572-3574.

[14] YUAN Xue-Song, LAN Ying, MA Chun-Yan, et al. Theoretical study on a 0.6THz third harmonic gyrotron, Phys. Plasmas[J], 2011, 18: 103115.

[15] GENG Zhi-Hui, LIU Pu-Kun, SU Yi-Nong, et al. Design of a Ka band 35kW CW low-voltage harmonic gyrotron[J], Int J. Infrared Millim. Waves, 2010, 31(1): 41-47.

[16] CAO Xiao-Qin, LIU Pu-Kun. Self-consistend nonlinear computation of a 28GHzV gyrotron at the second harmonic.[J]. J. Infrared Millim. Waves(曹晓琴, 刘濮鲲. 28GHzV二次谐波回旋振荡管的自洽非线性计算. 红外与毫米波学报)2005, 24(4): 317-320.

[17] YUAN Xue-Song, YAN Yang, FU Wen-Jie, et al. Multi-mode high harmonic operation in a terahertz gyrotron.[J]. J. Jnfrared Millim. Waves(袁学松, 鄢扬, 傅文杰, 等, 高次谐波太赫兹回旋管的多模工作. 红外与毫米波学报)2012, 31(4): 342-347.

[18] Huang Yong, Li Hongfu, Du Pingzhong, et al. Third-harmonic complex cavity gyrotron self-consistent nonlinear analysis, IEEE Trans. Plasma Sci[J].1997, 25(6): 1406-1411.

[19] Du Chao-Hai, Liu Pu-Kun . Beam-wave coupling strength analysis in a gyrotron traveling-wave amplifier, J Infrared Milli Terahz Waves[J]. 2010, 31: 714-723.

[20] Liu P-K, Borie E, Kartikeyan M V. Design of a 24GHzV, 25-50kW technology gyrotron operating at the second harmonic, Int. J. Infrared and Millimeter Waves[J]. 2000, 21(12): 1917-1943.

[21] Fliflet A W, Read M E, Chu K R, et al. A self- consistent field theory for gyrotron oscillator: application to a low Q gyromonotron, Int. J. Electronics[J].1983, 53(6): 505-521.

[22] Chu K R. Theory of electron cyclotron maser interaction in a cavity at the harmonic frequencies, Phys. Fluids[J].1978, 21(12): 2354-2364.第33卷第1期2014年2月红 外 与 毫 米 波 学 报J. Infrared Millim. WavesVol. 33, No.1February,2014

史少辉, 刘濮鲲, 杜朝海, 徐寿喜, 耿志辉, 李铮迪, 王虎. W波段三次谐波回旋振荡管的模拟与设计[J]. 红外与毫米波学报, 2014, 33(1): 55. SHI Shao-Hui, LIU Pu-Kun, DU Chao-Hai, XU Shou-Xi, GENG Zhi-Hui, LI Zheng-Di, WANG Hu. Simulation and design of a W-band third-harmonic gyrotron oscillator[J]. Journal of Infrared and Millimeter Waves, 2014, 33(1): 55.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!