Photonics Research, 2018, 6 (5): 05000B13, Published Online: Apr. 11, 2019  

Hybrid silicon nonlinear photonics [Invited] Download: 593次

Author Affiliations
1 Centre for Optical and Electromagnetic Research, JORCEP, State Key Laboratory for Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Hangzhou 310058, China
2 Key Laboratory of the Ministry of Education on Optoelectronic Information Technology, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
Copy Citation Text

Ming Li, Lin Zhang, Li-Min Tong, Dao-Xin Dai. Hybrid silicon nonlinear photonics [Invited][J]. Photonics Research, 2018, 6(5): 05000B13.

References

[1] L. Tsybeskov, D. J. Lockwood, M. Ichikawa. Silicon photonics: CMOS going optical [scanning the issue]. Proc. IEEE, 2009, 97: 1161-1165.

[2] T. Vallaitis, S. Bogatscher, L. Alloatti, P. Dumon, R. Baets, M. L. Scimeca, I. Biaggio, F. Diederich, C. Koos, W. Freude, J. Leuthold. Optical properties of highly nonlinear silicon-organic hybrid (SOH) waveguide geometries. Opt. Express, 2009, 17: 17357-17368.

[3] C. K. J. Leuthold, W. Freude. Nonlinear silicon photonics. Nat. Photonics, 2010, 4: 535-544.

[4] M. Lipson. Guiding, modulating, and emitting light on silicon-challenges and opportunities. J. Lightwave Technol., 2005, 23: 4222-4238.

[5] Y.-H. Kuo, H. Rong, V. Sih, S. Xu, M. Paniccia, O. Cohen. Demonstration of wavelength conversion at 40  Gb/s data rate in silicon waveguides. Opt. Express, 2006, 14: 11721-11726.

[6] M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, A. L. Gaeta. Silicon-chip-based ultrafast optical oscilloscope. Nature, 2008, 456: 81-84.

[7] C. Koos, P. Vorreau, T. Vallaitis, P. Dumon, W. Bogaerts, R. Baets, B. Esembeson, I. Biaggio, T. Michinobu, F. Diederich, W. Freude, J. Leuthold. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides. Nat. Photonics, 2009, 3: 216-219.

[8] J. T. Robinson, L. Chen, M. Lipson. On-chip gas detection in silicon optical microcavities. Opt. Express, 2008, 16: 4296-4301.

[9] T. Baehr-Jones, M. Hochberg, G. Wang, R. Lawson, Y. Liao, P. A. Sullivan, L. Dalton, A.-Y. Jen, A. Scherer. Optical modulation and detection in slotted silicon waveguides. Opt. Express, 2005, 13: 5216-5226.

[10] M. A. Foster, A. C. Turner, R. Salem, M. Lipson, A. L. Gaeta. Broad-band continuous-wave parametric wavelength conversion in silicon nanowaveguides. Opt. Express, 2007, 15: 12949-12958.

[11] R. Claps, D. Dimitropoulos, V. Raghunathan, Y. Han, B. Jalali. Observation of stimulated Raman amplification in silicon waveguides. Opt. Express, 2003, 11: 1731-1739.

[12] T. Liang, H. Tsang. Efficient Raman amplication in silicon-on-insulator waveguides. Appl. Phys. Lett., 2004, 85: 3343-3345.

[13] H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang, M. Paniccia. An all-silicon Raman laser. Nature, 2005, 433: 292-294.

[14] M. A. Foster, A. C. Turner, J. E. Sharping, B. S. Schmidt, M. Lipson, A. L. Gaeta. Broad-band optical parametric gain on a silicon photonic chip. Nature, 2006, 441: 960-963.

[15] E. A. Kittlaus, H. Shin, P. T. Rakich. Large Brillouin amplification in silicon. Nat. Photonics, 2016, 10: 463-467.

[16] H. K. Tsang, C. Wong, T. Liang, I. Day, S. Roberts, A. Harpin, J. Drake, M. Asghari. Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5  μm wavelength. Appl. Phys. Lett., 2002, 80: 416-418.

[17] G. W. Rieger, K. S. Virk, J. F. Young. Nonlinear propagation of ultrafast 1.5  μm pulses in high-index-contrast silicon-on-insulator waveguides. Appl. Phys. Lett., 2004, 84: 900-902.

[18] I.-W. Hsieh, X. Chen, X. Liu, J. I. Dadap, N. C. Panoiu, C.-Y. Chou, F. Xia, W. M. Green, Y. A. Vlasov, R. M. Osgood. Supercontinuum generation in silicon photonic wires. Opt. Express, 2007, 15: 15242-15249.

[19] L. Yin, Q. Lin, G. P. Agrawal. Soliton fission and supercontinuum generation in silicon waveguides. Opt. Lett., 2007, 32: 391-393.

[20] T. Baba. Slow light in photonic crystals. Nat. Photonics, 2008, 2: 465-473.

[21] B. Corcoran, C. Monat, C. Grillet, D. J. Moss, B. J. Eggleton, T. White, L. O’Faolain, T. F. Krauss. Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides. Nat. Photonics, 2009, 3: 206-210.

[22] H. Shin, W. Qiu, R. Jarecki, J. A. Cox, R. H. Olsson, A. Starbuck, Z. Wang, P. T. Rakich. Tailorable stimulated Brillouin scattering in nanoscale silicon waveguides. Nat. Commun., 2013, 4: 1944.

[23] W. Qiu, P. T. Rakich, H. Shin, H. Dong, M. Soljacic, Z. Wang. Stimulated Brillouin scattering in nanoscale silicon step-index waveguides: a general framework of selection rules and calculating SBS gain. Opt. Express, 2013, 21: 31402-31419.

[24] E. A. Kittlaus, N. T. Otterstrom, P. T. Rakich. On-chip inter-modal Brillouin scattering. Nat. Commun., 2017, 8: 15819.

[25] R. Dekker, N. Usechak, M. Forst, A. Driessen. Ultrafast nonlinear all-optical processes in silicon-on insulator waveguides. J. Phys. D, 2007, 40: R249-R271.

[26] R. S. Jacobsen, K. N. Andersen, P. I. Borel, J. Fage-Pedersen, L. H. Frandsen, O. Hansen, M. Kristensen, A. V. Lavrinenko, G. Moulin, H. Ou, C. Peucheret, B. Zsigri, A. Bjarklev. Strained silicon as a new electro-optic material. Nature, 2006, 441: 199-202.

[27] C. Schriever, F. Bianco, M. Cazzanelli, M. Ghulinyan, C. Eisenschmidt, J. de Boor, A. Schmid, J. Heitmann, L. Pavesi, J. Schilling. Second-order optical nonlinearity in silicon waveguides: inhomogeneous stress and interfaces. Adv. Opt. Mater., 2015, 3: 129-136.

[28] M. Cazzanelli, F. Bianco, E. Borga, G. Pucker, M. Ghulinyan, E. Degoli, E. Luppi, V. Véniard, S. Ossicini, D. Modotto, S. Wabnitz, R. Pierobon, L. Pavesi. Second-harmonic generation in silicon waveguides strained by silicon nitride. Nat. Mater., 2011, 11: 148-154.

[29] N. K. Hon, K. K. Tsia, D. R. Solli, B. Jalali. Periodically poled silicon. Appl. Phys. Lett., 2009, 94: 091116.

[30] E. Timurdogan, C. V. Poulton, M. J. Byrd, M. R. Watts. Electric field-induced second-order nonlinear optical effects in silicon waveguides. Nat. Photonics, 2017, 11: 200-206.

[31] R. Jones, H. Rong, A. Liu, A. Fang, M. Paniccia, D. Hak, O. Cohen. Net continuous wave optical gain in a low-loss silicon-on-insulator waveguide by stimulated Raman scattering. Opt. Express, 2005, 13: 519-525.

[32] H. Rong, S. Xu, Y.-H. Kuo, V. Sih, O. Cohen, O. Raday, M. Paniccia. Low-threshold continuous-wave Raman silicon laser. Nat. Photonics, 2007, 1: 232-237.

[33] E. Engin, D. Bonneau, C. M. Natarajan, A. S. Clark, M. G. Tanner, R. H. Hadéld, S. N. Dorenbos, V. Zwiller, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, J. L. O’Brien, M. G. Thompson. Photon pair generation in silicon micro-ring resonator with reverse bias enhancement. Opt. Express, 2013, 21: 27826-27834.

[34] L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguye, R. Cohen, N. Izhaky, M. Paniccia. 40  Gbit/s silicon optical modulator for high-speed applications. Electron. Lett., 2007, 43: 1196-1197.

[35] M. P. Nielsen, A. Y. Elezzabi. Ultrafast all-optical modulation in a silicon nanoplasmonic resonator. Opt. Express, 2013, 21: 20274-20279.

[36] T. J. Duffin, M. P. Nielsen, F. Diza, S. Palomba, S. A. Maier, R. F. Oulton. Degenerate four-wave mixing in silicon hybrid plasmonic waveguides. Opt. Lett., 2016, 41: 155-158.

[37] I. D. Rukhlenko, M. Premaratne, G. P. Agrawal. Nonlinear propagation in silicon-based plasmonic waveguides from the standpoint of applications. Opt. Express, 2011, 19: 206-217.

[38] D. Dai, S. He. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt. Express, 2009, 17: 16646-16653.

[39] R. Chikkaraddy, B. Nijs, F. Benz, S. J. Barrow, O. A. Scherman, E. Rosta, A. Demetriadou, P. Fox, O. Hess, J. J. Baumberg. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature, 2016, 535: 127-130.

[40] M. A. Foster, K. D. Moll, A. L. Gaeta. Optimal waveguide dimensions for nonlinear interactions. Opt. Express, 2004, 12: 2880-2887.

[41] M. Jazbinsek, L. Mutter, P. Gunter. Photonic applications with the organic nonlinear optical crystal DAST. IEEE J. Sel. Top. Quantum Electron., 2008, 14: 1298-1311.

[42] L. Alloatti, D. Korn, R. Palmer, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, H. Yu, W. Bogaerts, P. Dumon, R. Baets, C. Koos, W. Freude, J. Leuthold. 42.7  Gbit/s electro-optic modulator in silicon technology. Opt. Express, 2011, 19: 11841-11851.

[43] M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, A. Scherer. Towards a millivolt optical modulator with nano-slot waveguides. Opt. Express, 2007, 15: 8401-8410.

[44] T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, A. Jen, M. Hochberg, A. Scherer. Nonlinear polymer-clad silicon slot waveguide modulator with a half wave voltage of 0.25  V. Appl. Phys. Lett., 2008, 92: 163303.

[45] L. Alloatti, D. Korn, C. Weimann, C. Koos, W. Freude, J. Leuthold. Second-order nonlinear silicon-organic hybrid waveguides. Opt. Express, 2012, 20: 20506-20515.

[46] A. D. Bristow, N. Rotenberg, H. M. Van Driel. Two-photon absorption and Kerr coefficients of silicon for 850–2200  nm. Appl. Phys. Lett., 2007, 90: 191104.

[47] WangT.VenkatramN.ChenG.JiW.TanD. T. H., “Optical nonlinearity in silicon at mid-infrared wavelengths,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2014), paper STu1I.1.

[48] C. Koos, L. Jacome, C. G. Poulton, J. Leuthold, W. Freude. Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Opt. Express, 2007, 15: 5976-5990.

[49] W. Zhang, S. Serna, N. Dubreuil, E. Cassan. Nonlinear optimization of slot Si waveguides: TPA minimization with FOM TPA up to 4.25. Opt. Lett., 2015, 40: 1212-1215.

[50] T. Michinobu, J. C. May, J. H. Lim, C. Boudon, J.-P. Gisselbrecht, P. Seiler, M. Gross, I. Biaggio, F. Diederich. A new class of organic donor-acceptor molecules with large third-order optical nonlinearities. Chem. Commun., 2005, 6: 737-739.

[51] J. C. May, I. Biaggio, F. Bures, F. Diederich. Extended conjugation and donor-acceptor substitution to improve the third-order optical nonlinearity of small molecules. Appl. Phys. Lett., 2007, 90: 251106.

[52] B. Esembeson, M. L. Scimeca, T. Michinobu, F. Diederich, I. Biaggio. A high-optical quality supramolecular assembly for third-order integrated nonlinear optics. Adv. Mater., 2008, 20: 4584-4587.

[53] J. Leuthold, W. Freude, J.-M. Brosi, R. Baets, P. Dumon, I. Biaggio, M. L. Scimeca, F. Diederich, B. Frank, C. Koos. Silicon organic hybrid technology: a platform for practical nonlinear optics. Proc. IEEE, 2009, 97: 1304-1316.

[54] L. An, H. Liu, Q. Sun, N. Huang, Z. Wang. Wavelength conversion in highly nonlinear silicon-organic hybrid slot waveguides. Appl. Opt., 2014, 53: 4886-4893.

[55] VallaitisT.HeineC.BonkR.FreudeW.LeutholdJ.KoosC.EsembesonB.BiaggioI.MichinobuT.DiederichF.DumonP.BaetsR., “All-optical wavelength conversion at 42.7  Gbit/s in a 4  mm long silicon-organic hybrid waveguide,” in Optical Fiber Communication Conference and National Fiber Optic Engineers Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper OWS3.

[56] S. R. Marder, W. E. Torruellas, M. Blanchard-Desce, V. Ricci, G. I. Stegeman, S. Gilmour, J. Bredas, J. Li, G. U. Bublitz, S. G. Boxer. Large molecular third-order optical nonlinearities in polarized carotenoids. Science, 1997, 276: 1233-1236.

[57] L. Brozozowski, E. H. Sargent. Azobenzenes for photonic network applications: third-order nonlinear optical properties. J. Mater. Sci., 2001, 12: 483-489.

[58] M. Hochberg, T. Baehr-Jones, G. Wang, M. Shearn, K. Harvard, J. Luo, B. Chen, Z. Shi, R. Lawson, P. Sullivan, A. K. Y. Jen, L. Dalton, A. Scherer. Terahertz all-optical modulation in a silicon-polymer hybrid system. Nat. Mater., 2006, 5: 703-709.

[59] B. J. Eggleton, B. Luther-Davies, K. Richardson. Chalcogenide photonics. Nat. Photonics, 2011, 5: 141-148.

[60] ZarifiA.BedoyaA. C.MorrisonB.ZhangY.RenG.NguyenT.MaddenS.VuK.MitchellA.WolffC.MarpaungD.EggletonB. J., “Nonlinear loss engineering in a silicon-chalcogenide hybrid optical waveguide,” in Nonlinear Photonics (2016), paper NM4A.6.

[61] Z. Yuan, A. Anopchenko, N. Daldosso, R. Guider, D. Navarro-Urrios, A. Pitanti, R. Spano, L. Pavesi. Silicon nanocrystals as an enabling material for silicon photonics. Proc. IEEE, 2009, 97: 1250-1268.

[62] J. Matres, C. Lacava, G. C. Ballesteros, P. Minzioni, I. Cristiani, J. M. Fédéli, J. Marti, C. J. Oton. Low TPA and free-carrier effects in silicon nanocrystal-based horizontal slot waveguides. Opt. Express, 2012, 20: 23838-23845.

[63] T. Wu, P. P. Shum, X. Shao, T. Huang, Y. Sun. Third harmonic generation from mid-IR to near-IR regions in a phase-matched silicon-silicon-nanocrystal hybrid plasmonic waveguide. Opt. Express, 2014, 22: 24367-24377.

[64] I. D. Rukhlenko, V. Kalavally. Raman amplification in silicon-nanocrystal waveguides. J. Lightwave Technol., 2014, 32: 130-134.

[65] A. Martinez, J. Blasco, P. Sanchis, J. V. Galan, J. García-Rupérez, E. Jordana, P. Gautier, Y. Lebour, S. Hernández, R. Guider, N. Daldosso, B. Garrido, J. M. Fedeli, L. Pavesi, J. Marti. Ultrafast all-optical switching in a silicon-nanocrystal-based silicon slot waveguide at telecom wavelengths. Nano Lett., 2010, 10: 1506-1511.

[66] Z. Kang, J. Yuan, X. Zhang, Q. Wu, X. Sang, G. Farrell, C. Yu, F. Li, H. Y. Tam, P. K. A. Wai. CMOS-compatible 2-bit optical spectral quantization scheme using a silicon-nanocrystal-based horizontal slot waveguide. Sci. Rep., 2014, 4: 7177.

[67] Q. Liu, S. Gao, Z. Li, Y. Xie, S. He. Dispersion engineering of a silicon-nanocrystal-based slot waveguide for broadband wavelength conversion. Appl. Opt., 2011, 50: 1260-1265.

[68] V. M. N. Passaro, F. De Leonardis, A. G. Perri. Investigation of dispersion and nonlinear effects in silicon nanocrystal slot waveguides for surface optical sensing. IEEE Sens. J., 2012, 12: 2776-2783.

[69] H. Kim, A. C. Farrell, P. Senanayake, W.-J. Lee, D. L. Huffaker. Monolithically integrated InGaAs nanowires on 3D structured silicon-on-insulator as a new platform for full optical links. Nano Lett., 2016, 16: 1833-1839.

[70] B. Chen, H. Wu, C. Xin, D. Dai, L. Tong. Flexible integration of free-standing nanowires into silicon photonics. Nat. Commun., 2017, 8: 20.

[71] H.-G. Park, C. J. Barrelet, Y. Wu, B. Tian, F. Qian, C. M. Lieber. A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source. Nat. Photonics, 2008, 2: 622-626.

[72] P. L. Nichols, Z. Liu, L. Yin, S. Turkdogan, F. Fan, C.-Z. Ning. CdxPb1-xS alloy nanowires and heterostructures with simultaneous emission in mid-infrared and visible wavelengths. Nano Lett., 2015, 15: 909-916.

[73] Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally, J. Liphardt, P. Yang. Tunable nanowire nonlinear optical probe. Nature, 2007, 447: 1098-1101.

[74] R. Yan, D. Gargas, P. Yang. Nanowire photonics. Nat. Photonics, 2009, 3: 569-576.

[75] S. Yu, X. Wu, Y. Wang, X. Guo, L. Tong. 2D materials for optical modulation: challenges and opportunities. Adv. Mater., 2017, 29: 14.

[76] Z. Cheng, H. K. Tsang, K. Xu, Z. Shi. Spectral hole burning in silicon waveguides with a graphene layer on top. Opt. Lett., 2013, 38: 1930-1932.

[77] Z. Cheng, H. K. Tsang, X. Wang, K. Xu, J. B. Xu. In-plane optical absorption and free carrier absorption in graphene-on-silicon waveguides. IEEE J. Sel. Top. Quantum Electron., 2014, 20: 43-48.

[78] L. Yu, J. Zheng, Y. Xu, D. Dai, S. He. Local and nonlocal optically induced transparency effects in graphene-silicon hybrid nanophotonic integrated circuits. ACS Nano, 2014, 8: 11386-11393.

[79] C. Horvath, D. Bachman, R. Indoe, V. Van. Photo-thermal nonlinearity and optical bistability in a graphene-silicon waveguide resonator. Opt. Lett., 2013, 38: 5036-5039.

[80] H. Chen, V. Corboliou, A. S. Solntsev, D.-Y. Choi, D. de Ceglia, C. de Angelis, Y. Lu, D. N. Neshev. Enhanced second-harmonic generation from two-dimensional MoSe2 by waveguide integration. Light Sci. Appl., 2017, 6: e17060.

[81] L. Liu, K. Xu, X. Wan, J. Xu, C. Y. Wong, H. K. Tsang. Enhanced optical Kerr nonlinearity of MoS2 on silicon waveguides. Photon. Res., 2015, 3: 206-209.

[82] O. Salehzadeh, M. Djavid, N. H. Tran, I. Shih, Z. Mi. Optically pumped two-dimensional MoS2 lasers operating at room-temperature. Nano Lett., 2015, 15: 5302-5306.

[83] Y. Li, J. Zhang, D. Huang, H. Sun, F. Fan, J. Feng, Z. Wang, C. Z. Ning. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nat. Nanotechnol., 2017, 12: 987-992.

[84] FryettT. K.SeylerK. L.ZhengJ.LiuC.-H.XuX., “Silicon photonic crystal cavity enhanced second harmonic generation from monolayer WSe2,” arXiv: 1607.03548 (2016).

[85] S. Wu, S. Buckley, J. R. Schaibley, L. Feng, J. Yan, D. G. Mandrus, F. Hatami, W. Yao, J. Vuckovic, A. Majumdar, X. Xu. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature, 2015, 520: 69-72.

[86] J. B. Khurgin. Graphene–a rather ordinary nonlinear optical material. Appl. Phys. Lett., 2014, 104: 161116.

[87] FryettT.ZhanA.MajumdarA., “Cavity nonlinear optics with layered materials,” arXiv: 1708.05099 (2017).

[88] T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, D. L. Kwong, J. Hone, C. W. Wong. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nat. Photonics, 2012, 6: 554-559.

[89] D. J. Moss, L. Fu, I. Littler, B. Eggleton. Ultrafast all-optical modulation via two-photon absorption in silicon-on-insulator waveguides. Electron. Lett., 2005, 41: 320-321.

[90] L. Liao, Y.-C. Lin, M. Bao, R. Cheng, J. Bai, Y. Liu, Y. Qu, K. L. Wang, Y. Huang, X. Duan. High speed graphene transistors with a self-aligned nanowire gate. Nature, 2010, 467: 305-308.

[91] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, X. Zhang. A graphene-based broadband optical modulator. Nature, 2011, 474: 64-67.

[92] Z. Sun, A. Martinez, F. Wang. Optical modulators with 2D layered materials. Nat. Photonics, 2016, 10: 227-238.

[93] F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, P. Avouris. Ultrafast graphene photodetector. Nat. Nanotechnol., 2009, 4: 839-843.

[94] Y. Liu, H. K. Tsang. Time dependent density of free carriers generated by two photon absorption in silicon waveguides. Appl. Phys. Lett., 2007, 90: 211105.

Ming Li, Lin Zhang, Li-Min Tong, Dao-Xin Dai. Hybrid silicon nonlinear photonics [Invited][J]. Photonics Research, 2018, 6(5): 05000B13.

引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!