Photonics Research
Search

2018, 6(5) Column

MORE

Photonics Research 第6卷 第5期

Author Affiliations
Abstract
Department of Physics, King’s College London, Strand, London WC2R 2LS, UK
Strong nonlinearity of plasmonic metamaterials can be designed near their effective plasma frequency in the epsilon-near-zero (ENZ) regime. We explore the realization of an all-optical modulator based on the Au nonlinearity using an ENZ cavity formed by a few Au nanorods inside a Si photonic waveguide. The resulting modulator has robust performance with a modulation depth of about 30 dB/μm and loss less than 0.8 dB for switching energies below 600 fJ. The modulator provides a double advantage of high mode transmission and strong nonlinearity enhancement in the few-nanorod-based design.
Surface plasmons Metamaterials Nonlinear optical devices Nonlinear optics, integrated optics 
Photonics Research
2018, 6(5): 050000B1
Author Affiliations
Abstract
1 Department of Information Engineering, University of Brescia, Via Branze 38, Brescia 25123, Italy
2 Matériaux et Phénomènes Quantiques, Université Paris Diderot, CNRS UMR 7162, 10 rue A. Domon et L. Duquet, 75013 Paris, France
3 Department of Physics, Politecnico di Milano, Piazza Leonardo Da Vinci 32, Milano 20133, Italy
4 National Institute of Optics (INO), Via Branze 45, Brescia 25123, Italy
5 Nonlinear Physics Centre, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 2601, Australia
Dielectric nanocavities are emerging as a versatile and powerful tool for the linear and nonlinear manipulation of light at the nanoscale. In this work, we exploit the effective coupling of electric and toroidal modes in AlGaAs nanodimers to locally enhance both electric and magnetic fields while minimizing the optical scattering, thereby optimizing their second-harmonic generation efficiency with respect to the case of a single isolated nanodisk. We also demonstrate that proper near-field coupling can provide further degrees of freedom to control the polarization state and the radiation diagram of the second-harmonic field.
Scattering, stimulated Nonlinear optics, devices Nonlinear optics, materials Scattering theory 
Photonics Research
2018, 6(5): 050000B6
Author Affiliations
Abstract
1 Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
2 Department of Electrical Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, USA
Conventionally, metallic nanostructures are used for surface-enhanced Raman spectroscopy (SERS), but recently there has been increasing interest in the enhancement of Raman scattering from dielectric substrates due to their improved stability and biocompatibility compared with metallic substrates. Here, we report the observation of enhanced Raman scattering from rhodamine 6G molecules coated on silica microspheres. We excite the whispering gallery modes (WGMs) supported in the microspheres with a tapered fiber coupler for efficient WGM excitation, and the Raman enhancement can be attributed to the WGM mechanism. Strong resonance enhancement in pump laser intensity and modified Raman emission from the Purcell effect in the microsphere resonator are observed from the experiment and compared with theoretical results. A total Raman enhancement factor of 1.4×104 is observed, with contribution mostly from the enhancement in pump laser intensity. Our results show that, with an efficient pumping scheme, dielectric microspheres are a viable alternative to metallic SERS substrates.
Spectroscopy, Raman Surface-enhanced Raman scattering Resonators 
Photonics Research
2018, 6(5): 05000346
Author Affiliations
Abstract
1 State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
2 Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Nanophotonics, Jinan University, Guangzhou 511443, China
Aggregation of metal nanoparticles plays an important role in surface enhanced Raman scattering (SERS). Here, a strategy of dynamically aggregating/releasing gold nanoparticles is demonstrated using a gold-nanofilm coated nanofiber, with the assistance of enhanced optical force and plasmonic photothermal effect. Strong SERS signals of rhodamine 6G are achieved at the hotspots formed in the inter-particle and film-particle nanogaps. The proposed SERS substrate was demonstrated to have a sensitivity of 10 12 M, reliable reproducibility, and good stability.
Fiber optics sensors Optical tweezers or optical manipulation Integrated optics materials 
Photonics Research
2018, 6(5): 05000357
Weiqiang Wang 1,2,5,*Wenfu Zhang 1,6,*Zhizhou Lu 1,2Sai T. Chu 3[ ... ]Wei Zhao 1
Author Affiliations
Abstract
1 State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences (CAS), Xi’an 710119, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 Department of Physics and Materials Science, City University of Hong Kong, Hong Kong, China
4 School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China
5 e-mail: wwq@opt.ac.cn
6 e-mail: wfuzhang@opt.ac.cn
Dual combs are an emerging tool to obtain unprecedented resolution, high sensitivity, ultrahigh accuracy, broad bandwidth, and ultrafast data updating rate in the fields of molecular spectroscopy, optical metrology, as well as optical frequency synthesis. The recent progress in chip-based microcombs has promoted the on-chip dual-comb measuring systems to a new phase attributed to the large frequency spacing and broad spectrum. In this paper, we demonstrate proof-of-concept dual-comb generation with orthogonal polarization in a single microresonator through pumping both the transverse-electric (TE) and transverse-magnetic (TM) modes simultaneously. The two orthogonal polarized pumps are self-oscillating in a fiber ring cavity. The generated dual comb exhibits excellent stability due to the intrinsic feedback mechanism of the self-locked scheme. The repetition rate of the two orthogonal combs is slightly different because of the mode spacing difference between the TE and TM modes. Such orthogonal polarized dual-combs could be a new comb source for out-of-lab applications in the fields of integrated spectroscopy, ranging measurement, optical frequency synthesis, and microwave comb generation.
Nonlinear optics, four-wave mixing Nonlinear optics, integrated optics Microcavities Kerr effect 
Photonics Research
2018, 6(5): 05000363
Author Affiliations
Abstract
1 Laser & Fiber Electronics Group, Faculty of Electronics, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
2 Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeze Wyspianskiego 27, 50-370 Wroclaw, Poland
3 Laboratory of Optical Fiber Technology, Maria Curie-Sklodowska University, pl. M. Curie-Sklodowskiej 3, Lublin, Poland
We report an all-fiber, all-polarization maintaining (PM) source of widely tunable (1800–2000 nm) ultrashort pulses based on the amplification of coherent self-frequency-shifted solitons generated in a highly nonlinear fiber pumped with an Er-doped fiber laser. The system delivers sub-100 fs pulses with energies up to 8.6 nJ and is built entirely from PM optical fibers, without any free-space optics. The all-fiber alignment-free design significantly increases the suitability of such a source for field deployments.
Nonlinear optics, fibers Mode-locked lasers Nonlinear optics, fibers 
Photonics Research
2018, 6(5): 05000368
Author Affiliations
Abstract
1 Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK
2 Faculty of Physical Sciences and Engineering, University of Southampton, Southampton SO17 1BJ, UK
3 e-mail: S.Saito@soton.ac.uk
In silicon photonics, the carrier depletion scheme has been the most commonly used mechanism for demonstrating high-speed electro-optic modulation. However, in terms of phase modulation efficiency, carrier-accumulation-based devices potentially offer almost an order of magnitude improvement over those based on carrier depletion. Previously reported accumulation modulator designs only considered vertical metal-oxide-semiconductor (MOS) capacitors, which imposes serious restrictions on the design flexibility and integratability with other photonic components. In this work, for the first time to our knowledge, we report experimental demonstration of an all-silicon accumulation phase modulator based on a lateral MOS capacitor. Using a Mach–Zehnder interferometer modulator with a 500-μm-long phase shifter, we demonstrate high-speed modulation up to 25 Gbit/s with a modulation efficiency (VπLπ) of 1.53 V·cm.
Optical interconnects Integrated optics devices Modulators 
Photonics Research
2018, 6(5): 05000373
Author Affiliations
Abstract
School of Optical and Electrical Information, Huazhong University of Science and Technology, Wuhan 430074, China
With the rapidly increasing bandwidth requirements of optical communication networks, compact and low-cost large-scale optical switches become necessary. Silicon photonics is a promising technology due to its small footprint, cost competitiveness, and high bandwidth density. In this paper, we demonstrate a 12×12 silicon wavelength routing switch employing cascaded arrayed waveguide gratings (AWGs) connected by a silicon waveguide interconnection network on a single chip. We optimize the connecting strategy of the crossing structure to reduce the switch’s footprint. We develop an algorithm based on minimum standard deviation to minimize the port-to-port insertion loss (IL) fluctuation of the switch globally. The simulated port-to-port IL fluctuation decreases by about 3 dB compared with that of the conventional one. The average measured port-to-port IL is 13.03 dB, with a standard deviation of 0.78 dB and a fluctuation of 2.39 dB. The device can be used for wide applications in core networks and data centers.
Networks, wavelength routing Integrated optics devices Wavelength filtering devices 
Photonics Research
2018, 6(5): 05000380
Author Affiliations
Abstract
1 Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060, China
2 SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
This paper reports the experimental realization of efficiently sorting vector beams by polarization topological charge (PTC). The PTC of a vector beam can be defined as the repetition number of polarization state change along the azimuthal axis, while its sign stands for the rotating direction of the polarization. Here, a couple of liquid crystal Pancharatnam–Berry optical elements (PBOEs) have been used to introduce conjugated spatial phase modulations for two orthogonal circular polarization states. Applying these PBOEs in a 4-f optical system, our experiments show the setup can work for PTC sorting with a separation efficiency of more than 58%. This work provides an effective way to decode information from different PTCs, which may be interesting in many fields, especially in optical communication.
Polarization Berry's phase Diffraction theory Multiplexing 
Photonics Research
2018, 6(5): 05000385
Author Affiliations
Abstract
1 Key Laboratory of Special Display Technology, Ministry of Education, National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
2 Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China
3 School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei 230009, China
4 Aston Institute of Photonic Technologies, Aston University, Birmingham B4 7ET, UK
A band-gap-tailored random laser with a wide tunable range and low threshold through infrared radiation is demonstrated. When fluorescent dyes are doped into the liquid crystal and heavily doped chiral agent system, we demonstrate a wavelength tuning random laser instead of a side-band laser, which is caused by the combined effect of multi-scattering of liquid crystal (LC) and band-gap control. Through rotating the infrared absorbing material on the side of the LC cell, an adjustable range for random lasing of 80 nm by infrared light irradiation was observed.
Liquid-crystal devices Lasers, tunable 
Photonics Research
2018, 6(5): 05000390
Author Affiliations
Abstract
1 Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China
2 School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China
We experimentally demonstrated a method of generating continuously wavelength-switchable optical vortex beams (OVBs) in an all-fiber laser. A polarization-dependent microknot resonator (MKR) functions as comb filter and accounts for the narrow linewidth (0.018 nm) of multiwavelength channels. The wavelength interval corresponds to the free spectral range of the MKR. We exploit a fused SMF–FMF (single mode fiber–few mode fiber) mode coupler to obtain broadband mode conversion and successfully achieve multiwavelength switchable OVBs. As far as we know, this is the first report about identical multiwavelength vortex beams with topological charges of ±1. It has been verified that each channel of the vortex beams preserves the same orbital angular momentum (OAM) properties through their clear spiral interferograms. Multiwavelength vortex beams with identical OAM properties are desirable for multiplexing, exchanging, and routing to further improve the capacity of optical fiber transmission.
Lasers, fiber Lasers, tunable Optical vortices Multiplexing 
Photonics Research
2018, 6(5): 05000396
Yue Li 1,2,3Jian Li 1,2,3Taixing Huang 1,2,3Fei Huang 1,2,3[ ... ]Bo Peng 1,2,3,*
Author Affiliations
Abstract
1 National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu 610054, China
2 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
3 Key Laboratory of Multi-Spectral Absorbing Materials and Structures of Ministry of Education, University of Electronic Science and Technology of China, Chengdu 610054, China
4 e-mail: denglj@uestc.edu.cn
Although plasmonic nanostructure has attracted widespread research interest in recent years, it is still a major challenge to realize large-scale active plasmonic nanostructure operation in the visible optical frequency. Herein, we demonstrate a heterostructure geometry comprising a centimeter-scale Au nanoparticle monolayer and VO2 films, in which the plasmonic peak is inversely tuned between 685 nm and 618 nm by a heating process since the refractive index will change when VO2 films undergo the transition between the insulating phase and the metallic phase. Simultaneously, the phase transition of VO2 films can be improved by plasmonic arrays due to plasmonic enhanced light absorption and the photothermal effect. The phase transition temperature for Au/VO2 films is lower than that for bare VO2 films and can decrease to room temperature under the laser irradiation. For light-induced phase transition of VO2 films, the laser power of Au/VO2 film phase transition is 28.6% lower than that of bare VO2 films. Our work raises the feasibility to use active plasmonic arrays in the visible region.
Active or adaptive optics Plasmonics Subwavelength structures, nanostructures Spectroscopy, modulation 
Photonics Research
2018, 6(5): 05000409
Linyong Yang 1Bin Zhang 1,2,3Ke Yin 1Tianyi Wu 1[ ... ]Jing Hou 1,2,3,*
Author Affiliations
Abstract
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
2 Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha 410073, China
3 Hunan Provincial Collaborative Innovation Center of High Power Fiber Laser, Changsha 410073, China
A spectrally flat mid-infrared supercontinuum (MIR-SC) spanning 2.8–3.9 μm with a maximum output power of 411 mW was generated in a holmium-doped ZBLAN fiber amplifier (HDZFA). A broadband fiber-based SC covering the 2.4–3.2 μm region was designed to seed the amplifier. Benefiting from the broadband seed laser, the obtained SC had a high spectral flatness of 3 dB over the range of 2.93–3.70 μm (770 nm). A spectral integral showed that the SC power beyond 3 μm was 372 mW, i.e., a power ratio of 90.6% of the total power. This paper, to the best of our knowledge, not only demonstrates the first spectrally flat MIR-SC directly generated in fluoride fiber amplifiers, but also reports the highest power ratio beyond 3 μm obtained in rare-earth-doped fluoride fiber until now.
Supercontinuum generation Lasers, fiber Nonlinear optics, fibers Fiber optics amplifiers and oscillators 
Photonics Research
2018, 6(5): 05000417
Author Affiliations
Abstract
1 Department of Photonics and Institute of Electro-Optical Engineering, Taiwan Chiao Tung University, Hsinchu 30010, China
2 Department of Electronic Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong, China
3 Department of Photonics, Feng Chia University, Taichung 40724, China
We propose and experimentally demonstrate a recorded 1-m bidirectional 20.231-Gbit/s tricolor R/G/B laser diode (LD) based visible-light communication (VLC) system supporting signal remodulation. In the signal remodulation system, an LD source is not needed at the client side. The client reuses the downstream signal sent from the central office (CO) and remodulates it to produce the upstream signal. As the LD sources are located at the CO, the laser wavelength and temperature managements at the cost-sensitive client side are not needed. This is the first demonstration, to our knowledge, of a >20 Gbit/s data rate tricolor R/G/B VLC signal transmission supporting upstream remodulation.
Free-space optical communication Optical communications 
Photonics Research
2018, 6(5): 05000422
Author Affiliations
Abstract
1 Faculty of Engineering and Natural Science, Sabanci University, Istanbul 34956, Turkey
2 e-mail: eesa@sabanciuniv.edu
The chimera state is the concurrent combination of synchronous and incoherent oscillations in a set of identical oscillators. In this study, we demonstrate the states for optical nanoresonators where the oscillators are designed based on a plasmonic dimer cavity. This resonator interchanges radiative energy with an active medium located at its hotspot, and therefore forms an amplitude-mediated oscillating system. Finite-difference time-domain (FDTD)-based numerical analysis of a circular array of the coupled oscillators reveals that regardless of identical nature, oscillator phase is not concordant over time for all members. The effect of coupling strength on the phase escape/synchronization of the oscillators is investigated for the plasmonic nanoresonator system. It is shown that for identical oscillators, which are placed symmetrically over the perimeter of a disc, the array can be divided to several subgroups of concurrent coherent and incoherent members. While the oscillator of each subgroup seems to be locked together, one member can escape from synchronization for a while and return to coherency, or it can sync with the other groups. The effect of coupling strength and number of oscillators on the phase-escape pace is studied for this system, and strong coupling is shown to force the array members to fully synchronize while weaker coupling causes chimera states in the array.
Chaos Optical resonators Nonlinear optical materials Surface plasmons Laser theory 
Photonics Research
2018, 6(5): 05000427
Author Affiliations
Abstract
1 Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, China
2 J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, USA
We demonstrate the suppression of soft X-ray high harmonics generated by two-color laser pulses interacting with Ne gas in a gas cell. We show that harmonic suppression can occur at the proper combination of the propagation distance and gas pressure. The physical mechanism behind is the phase mismatch between “short”-trajectory harmonics generated at the early and later times through the interplay of geometric phase, dispersion, and plasma effects. In addition, we demonstrate that the position and depth of harmonic suppression can be tuned by increasing the gas pressure. Furthermore, the suppression can be extended to other laser focusing configurations by properly scaling macroscopic parameters. Our investigation reveals a simple and novel experimental scheme purely relying on the phase mismatch for selectively controlling soft X-ray tabletop light sources without adopting the filters for applications.
Harmonic generation and mixing Ultrafast nonlinear optics X-rays, soft x-rays, extreme ultraviolet (EUV) Ultrafast phenomena 
Photonics Research
2018, 6(5): 05000434
Author Affiliations
Abstract
1 Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
2 College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060, China
3 e-mail: xiangpingli@jnu.edu.cn
4 e-mail: gpwang@szu.edu.cn
We show that a metasurface composed of a subwavelength metallic slit array embedded in an asymmetric dielectric environment can exhibit either extraordinary optical transmission (EOT) or extraordinary optical diffraction (EOD). The cascaded refractive indices of the dielectrics can leverage multiple decaying passages into variant subsections with different diffraction order combinations according to the diffraction order chart in the k-vector space, providing a flexible mean to tailor resonance decaying pathways of the metallic slit cavity mode by changing the wavevector of the incident light. As a result, either the zeroth transmission or 1st reflection efficiencies can be enhanced to near unity by the excitation of the localized slit cavity mode, leading to either EOT or EOD in a single structure, depending on the illumination angle. Based on this appealing feature, a multifunctional metasurface that can switch its functionality between transmission filter, mirror, and off-axis lens is demonstrated. Our findings provide a convenient way to construct multifunctional miniaturized optical components on a single planar device.
Metamaterials Plasmonics Diffraction gratings 
Photonics Research
2018, 6(5): 05000443
Author Affiliations
Abstract
Shaanxi Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Science, Xi’an Jiaotong University, Xi’an 710049, China
Vector beams with spatially variant polarization have attracted much attention in recent years, with potential applications in both classical optics and quantum optics. In this work, we study a polarization selection of spatial intensity distribution by utilizing a hybridly polarized beam as a coupling beam and a circularly polarized beam as a probe beam in Rb87 atom vapor. We experimentally observe that the spatial intensity distribution of the probe beam after passing through atoms can be modulated by the hybridly polarized beam due to the optical pumping effect. Then, the information loaded in the probe beam can be designedly filtrated by an atomic system with a high extinction ratio. A detailed process of the optical pumping effect in our configurations and the corresponding absorption spectra are presented to interpret our experimental results, which can be used for the spatial optical information locally extracted based on an atomic system, which has potential applications in quantum communication and computation.
Atom optics Polarization Spectroscopy, atomic 
Photonics Research
2018, 6(5): 05000451
Author Affiliations
Abstract
1 Advanced Semiconductor Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
2 Photonics Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
A nanowire (NW) structure provides an alternative scheme for deep ultraviolet light emitting diodes (DUV-LEDs) that promises high material quality and better light extraction efficiency (LEE). In this report, we investigate the influence of the tapering angle of closely packed AlGaN NWs, which is found to exist naturally in molecular beam epitaxy (MBE) grown NW structures, on the LEE of NW DUV-LEDs. It is observed that, by having a small tapering angle, the vertical extraction is greatly enhanced for both transverse magnetic (TM) and transverse electric (TE) polarizations. Most notably, the vertical extraction of TM emission increased from 4.8% to 24.3%, which makes the LEE reasonably large to achieve high-performance DUV-LEDs. This is because the breaking of symmetry in the vertical direction changes the propagation of the light significantly to allow more coupling into radiation modes. Finally, we introduce errors to the NW positions to show the advantages of the tapered NW structures can be projected to random closely packed NW arrays. The results obtained in this paper can provide guidelines for designing efficient NW DUV-LEDs.
Light-emitting diodes Quantum-well, -wire and -dot devices 
Photonics Research
2018, 6(5): 05000457
Zhaosong Li 1,2Dan Lu 1,2,*Yiming He 1,2Fangyuan Meng 1,2[ ... ]Jiaoqing Pan 1,2
Author Affiliations
Abstract
1 Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
A monolithic integrated few-mode transmitter comprising of two directly modulated distributed feedback lasers and a multimode-interference-coupler-based mode converter-multiplexer with 66% mode conversion efficiency was designed and demonstrated. A fundamental TE0 mode and a first-order TE1 mode were successfully generated from the transmitter, with the output power of 4 and 5.5 mW at a pump current of around 150 mA, respectively, at the common output port. The small signal modulation bandwidth of the TE0 and TE1 channels reached 17.4 and 14.7 GHz, respectively. Error-free 2×10-Gbit/s direct modulation of the two-mode transmitter was demonstrated, with a power penalty of 4.3 dB between the TE0 mode and the TE1 mode at the bit error rate of 1×10 9.
Multiplexing Optical interconnects Photonic integrated circuits Semiconductor lasers 
Photonics Research
2018, 6(5): 05000463
Author Affiliations
Abstract
Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106, USA
The mode-locked laser diode has emerged as a promising candidate as a signal source for photonic radar systems, wireless data transmission, and frequency comb spectroscopy. They have the advantages of small size, low cost, high reliability, and low power consumption, thanks to semiconductor technology. Mode-locked lasers based on silicon photonics advance these qualities by the use of highly advanced silicon manufacturing technology. This paper will begin by giving an overview of mode-locked laser diode literature, and then focus on mode-locked lasers on silicon. The dependence of mode-locked laser performance on design details is presented.
Mode-locked lasers Diode lasers Photonic integrated circuits 
Photonics Research
2018, 6(5): 05000468
Chunxiao Cai 1,2Long Ma 1,2Juan Li 1,2Hui Guo 1,2[ ... ]Jiangrui Gao 1,2,*
Author Affiliations
Abstract
1 State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
2 Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
As a highly entangled quantum network, the cluster state has the potential for greater information capacity and use in measurement-based quantum computation. Here, we report generating a continuous-variable quadripartite “square” cluster state of multiplexing orthogonal spatial modes in a single optical parametric amplifier (OPA), and further improve the quality of entanglement by optimizing the pump profile. We produce multimode entanglement of two first-order Hermite–Gauss modes within one beam in a single multimode OPA and transform it into a cluster state by phase correction. Furthermore, the pump-profile dependence of the entanglement of this state is explored. Compared with fundamental mode pumping, an enhancement of approximately 33% is achieved using the suitable pump-profile mode. Our approach is potentially scalable to multimode entanglement in the spatial domain. Such spatial cluster states may contribute to future schemes in spatial quantum information processing.
Nonlinear optics, parametric processes Squeezed states 
Photonics Research
2018, 6(5): 05000479
Author Affiliations
Abstract
1 Department of Electrical and Systems Engineering, Washington University, St. Louis, Missouri 63130, USA
2 Department of Automation, Tsinghua University, Beijing 100084, China
3 Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
We present a study of single nanoparticle detection using parity-time (PT) symmetric whispering-gallery mode (WGM) resonators. Our theoretical model and numerical simulations show that, with balanced gain and loss, the PT-symmetric WGM nanoparticle sensor, tailored to operate at PT phase transition points (also called exceptional points), exhibits significant enhancement in frequency splitting when compared with a single WGM nanoparticle sensor subject to the same perturbation. The presence of gain in the PT-symmetric system leads to narrower linewidth, which helps to resolve smaller changes in frequency splitting and improve the detection limit of nanoparticle sensing. Furthermore, we also provide a general method for detecting multiple nanoparticles entering the mode volume of a PT-symmetric WGM sensor one by one. Our study shows the feasibility of PT-symmetric WGM resonators for ultrasensitive single nanoparticle and biomolecule sensing.
Sensors Coupled resonators Resonators 
Photonics Research
2018, 6(5): 05000A23
Author Affiliations
Abstract
1 Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico
2 CONACYT–Instituto Nacional de Astrofísica, Óptica y Electrónica, Calle Luis Enrique Erro No. 1, Sta. Ma. Tonantzintla, Pue. CP 72840, Mexico
3 Instituto Nacional de Astrofísica, Óptica y Electrónica, Calle Luis Enrique Erro No. 1, Sta. Ma. Tonantzintla, Pue. CP 72840, Mexico
We study light propagation through cyclic arrays, composed by copies of a given PT-symmetric dimer, using a group theoretical approach and finite element modeling. The theoretical mode-coupling analysis suggests the use of these devices as output port replicators where the dynamics is controlled by the impinging light field. This is confirmed in good agreement with finite element propagation in an experimentally feasible necklace of passive PT-symmetric dimers constructed from lossy and lossless waveguides.
Waveguides Guided waves Optical amplifiers Classical and quantum physics 
Photonics Research
2018, 6(5): 05000A31
Author Affiliations
Abstract
Department of Electronic Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
Parity–time (PT) symmetry has been demonstrated in the frame of classic optics. Its applications in laser science have resulted in unconventional control and manipulation of resonant modes. PT-symmetric periodic circular Bragg lasers were previously proposed. Analyses with a transfer-matrix method have shown their superior properties of reduced threshold and enhanced modal discrimination between the radial modes. However, the properties of the azimuthal modes were not analyzed, which restricts further development of circular Bragg lasers. Here, we adopt the coupled-mode theory to design and analyze chirped circular Bragg lasers with radial PT symmetry. The new structures possess more versatile modal control with further enhanced modal discrimination between the azimuthal modes. We also analyze azimuthally modulated circular Bragg lasers with radial PT symmetry, which are shown to achieve even higher modal discrimination.
Optical resonators Guided waves Bragg reflectors Integrated optics devices 
Photonics Research
2018, 6(5): 05000A38
Author Affiliations
Abstract
1 Centre for Optical and Electromagnetic Research, JORCEP, State Key Laboratory for Modern Optical Instrumentation, Zhejiang Provincial Key Laboratory for Sensing Technologies, Zhejiang University, Hangzhou 310058, China
2 Key Laboratory of the Ministry of Education on Optoelectronic Information Technology, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
Nonlinear silicon photonics has shown an ability to generate, manipulate, and detect optical signals on an ultracompact chip at a potential low cost. There are still barriers hindering its development due to essential material limitations. In this review, hybrid structures with some specific materials developed for nonlinear silicon photonics are discussed. The combination of silicon and the nonlinear materials takes advantage of both materials, which shows great potential to improve the performance and expand the applications for nonlinear silicon photonics.
Nonlinear optics, integrated optics Nonlinear optical devices Integrated optics materials 
Photonics Research
2018, 6(5): 05000B13
Author Affiliations
Abstract
1 DTU Fotonik, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
2 IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
3 IHP Solutions GmbH, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
4 Institut für Hochfrequenz- und Halbleiter-Systemtechnologien, TU Berlin, Einsteinufer 25, 10587 Berlin, Germany
5 Currently at AMETEK CTS Europe GmbH, Lünener Straße 211 - 212, 59174 Kamen, Germany
6 e-mail: andrzej.gajda@ihp-solutions.com
A polarization-diversity loop with a silicon waveguide with a lateral p-i-n diode as a nonlinear medium is used to realize polarization insensitive four-wave mixing. Wavelength conversion of seven dual-polarization 16-quadrature amplitude modulation (QAM) signals at 16 GBd is demonstrated with an optical signal-to-noise ratio penalty below 0.7 dB. High-quality converted signals are generated thanks to the low polarization dependence (≤0.5 dB) and the high conversion efficiency (CE) achievable. The strong Kerr nonlinearity in silicon and the decrease of detrimental free-carrier absorption due to the reverse-biased p-i-n diode are key in ensuring the high CE levels.
Nonlinear optics, four-wave mixing Nonlinear optics, integrated optics Nonlinear optics, materials Nonlinear optical signal processing Coherent communications 
Photonics Research
2018, 6(5): 05000B23
Author Affiliations
Abstract
1 Centre for Micro-Photonics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
2 ARC Centre of Excellence for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS), RMIT University, Melbourne, VIC 3001, Australia
3 Department of Physics and Material Science, City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
4 State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
5 INRS-Énergie, Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
6 National Research University of Information Technologies, Mechanics and Optics, St. Petersburg, Russia
7 Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
We demonstrate significantly improved performance of a microwave true time delay line based on an integrated optical frequency comb source. The broadband micro-comb (over 100 nm wide) features a record low free spectral range (FSR) of 49 GHz, resulting in an unprecedented record high channel number (81 over the C band)—the highest number of channels for an integrated comb source used for microwave signal processing. We theoretically analyze the performance of a phased array antenna and show that this large channel count results in a high angular resolution and wide beam-steering tunable range. This demonstrates the feasibility of our approach as a competitive solution toward implementing integrated photonic true time delays in radar and communications systems.
Radio frequency photonics Nonlinear optics, integrated optics Phased-array radar 
Photonics Research
2018, 6(5): 05000B30
Author Affiliations
Abstract
1 Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Univ. Paris-Sud, Université Paris Saclay, C2N Orsay, 91405 Orsay cedex, France
2 Laboratoire Charles Fabry, Institut d’Optique Graduate School, CNRS, Université Paris Saclay, 2 Avenue Augustin Fresnel, 91127 Palaiseau cedex, France
3 Department of Materials Science and Engineering, Massachusetts Institute of Technology-MIT, Cambridge, Massachusetts 02139, USA
4 College of Optics and Photonics-CREOL, University of Central Florida, Orlando, Florida 32816, USA
In this paper, we report the experimental characterization of highly nonlinear GeSbS chalcogenide glass waveguides. We used a single-beam characterization protocol that accounts for the magnitude and sign of the real and imaginary parts of the third-order nonlinear susceptibility of integrated Ge23Sb7S70 (GeSbS) chalcogenide glass waveguides in the near-infrared wavelength range at λ=1580 nm. We measured a waveguide nonlinear parameter of 7.0±0.7 W 1·m 1, which corresponds to a nonlinear refractive index of n2=(0.93±0.08)×10 18 m2/W, comparable to that of silicon, but with an 80 times lower two-photon absorption coefficient βTPA=(0.010±0.003) cm/GW, accompanied with linear propagation losses as low as 0.5 dB/cm. The outstanding linear and nonlinear properties of GeSbS, with a measured nonlinear figure of merit FOMTPA=6.0±1.4 at λ=1580 nm, ultimately make it one of the most promising integrated platforms for the realization of nonlinear functionalities.
Integrated optics materials Nonlinear optical materials Nonlinear optics, integrated optics 
Photonics Research
2018, 6(5): 05000B37
Author Affiliations
Abstract
1 Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Sud, Université Paris-Saclay, C2N Marcoussis, 91460 Marcoussis, France
2 Thales Research and Technology France, 1 avenue Augustin Fresnel, 91120 Palaiseau, France
3 Université Paris Diderot, Sorbone Paris Cité, 75013 Paris, France
We introduce a nanoscale photonic platform based on gallium phosphide. Owing to the favorable material properties, peak power intensity levels of 50 GW/cm2 are safely reached in a suspended membrane. Consequently, the field enhancement is exploited to a far greater extent to achieve efficient and strong light–matter interaction. As an example, parametric interactions are shown to reach a deeply nonlinear regime, revealing cascaded four-wave mixing leading to comb generation and high-order soliton dynamics.
Kerr effect Nonlinear wave mixing Pulse propagation and temporal solitons Integrated optics materials Photonic crystals Microwaves 
Photonics Research
2018, 6(5): 05000B43
Author Affiliations
Abstract
1 Photonics Devices and Systems Group, Singapore University of Technology and Design, 8 Somapah Rd., Singapore 487372, Singapore
2 Data Storage Institute, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way #08-01 Innovis, Singapore 138634, Singapore
CMOS platforms with a high nonlinear figure of merit are highly sought after for high photonic quantum efficiencies, enabling functionalities not possible from purely linear effects and ease of integration with CMOS electronics. Silicon-based platforms have been prolific amongst the suite of advanced nonlinear optical signal processes demonstrated to date. These include crystalline silicon, amorphous silicon, Hydex glass, and stoichiometric silicon nitride. Residing between stoichiometric silicon nitride and amorphous silicon in composition, silicon-rich nitride films of various formulations have emerged recently as promising nonlinear platforms for high nonlinear figure of merit nonlinear optics. Silicon-rich nitride films are compositionally engineered to create bandgaps that are sufficiently large to eliminate two-photon absorption at telecommunications wavelengths while enabling much larger nonlinear waveguide parameters (5x–500x) than those in stoichiometric silicon nitride. This paper reviews recent developments in the field of nonlinear optics using silicon-rich nitride platforms, as well as the outlook and future opportunities in this burgeoning field.
Nonlinear optics, integrated optics Kerr effect 
Photonics Research
2018, 6(5): 05000B50
Author Affiliations
Abstract
1 Emergent Photonics (Epic) Lab, Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, UK
2 City University of Hong Kong, Tat Chee Avenue, Hong Kong, China
3 Centre for Microphotonics, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
4 INRS-EMT, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
5 Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
6 National Research University of Information Technologies, Mechanics and Optics, St. Petersburg, Russia
7 Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
We experimentally demonstrate the generation of highly coherent Type-II micro-combs based on a micro-resonator nested in a fiber cavity loop, known as the filter-driven four wave mixing (FD-FWM) laser scheme. In this system, the frequency spacing of the comb can be adjusted to integer multiples of the free-spectral range (FSR) of the nested micro-resonator by properly tuning the fiber cavity length. Sub-comb lines with single FSR spacing around the primary comb lines can be generated. Such a spectral emission is known as a “Type-II comb”. Our system achieves a fully coherent output. This behavior is verified by numerical simulations. This study represents an important step forward in controlling and manipulating the dynamics of an FD-FWM laser.
Nonlinear optics, integrated optics Lasers, fiber Optical resonators 
Photonics Research
2018, 6(5): 05000B67
Author Affiliations
Abstract
1 Université de Lyon, Institut des Nanotechnologie de Lyon, 69131 Ecully, France
2 Department of Electrical Engineering, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
3 School of Physics, University of Sydney, Sydney, NSW 2006, Australia
4 RMIT School of Electrical and Computer Engineering, Melbourne, VIC 3000, Australia
5 Université Côte d’Azur, CNRS, CRHEA, France
6 e-mail: Christian.grillet@ec-lyon.fr
We report the fabrication and characterization of silicon carbide microdisks on top of silicon pillars suited for applications from near- to mid-infrared. We probe 10 μm diameter disks with different under-etching depths, from 4 μm down to 1.4 μm, fabricated by isotropic plasma etching and extract quality factors up to 8400 at telecom wavelength. Our geometry is suited to present high Q single-mode operation. We experimentally demonstrate high-order whispering-gallery mode suppression while preserving the fundamental gallery mode and investigate some requirements for nonlinear optics applications on this platform, specifically in terms of quality factor and dispersion for Kerr frequency comb generation.
Resonators Integrated optics devices Nonlinear optics, materials 
Photonics Research
2018, 6(5): 05000B74
Author Affiliations
Abstract
1 Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA
2 John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
Typically, photonic waveguides designed for nonlinear frequency conversion rely on intuitive and established principles, including index guiding and bandgap engineering, and are based on simple shapes with high degrees of symmetry. We show that recently developed inverse-design techniques can be applied to discover new kinds of microstructured fibers and metasurfaces designed to achieve large nonlinear frequency-conversion efficiencies. As a proof of principle, we demonstrate complex, wavelength-scale chalcogenide glass fibers and gallium phosphide three-dimensional metasurfaces exhibiting some of the largest nonlinear conversion efficiencies predicted thus far, e.g., lowering the power requirement for third-harmonic generation by 104 and enhancing second-harmonic generation conversion efficiency by 107. Such enhancements arise because, in addition to enabling a great degree of tunability in the choice of design wavelengths, these optimization tools ensure both frequency- and phase-matching in addition to large nonlinear overlap factors.
Computational electromagnetic methods Nonlinear optics, fibers Harmonic generation and mixing Nonlinear optics, devices Nanophotonics and photonic crystals 
Photonics Research
2018, 6(5): 05000B82
Author Affiliations
Abstract
1 Centre for Nanosciences and Nanotechnologies (C2N), Paris-Sud University, Orsay, France
2 CNRS Senior research fellow continuing position, Institut des Nanotechnologies de Lyon (INL), Ecole centrale de Lyon, Lyon, France (christian.grillet@ec-lyon.fr)
3 Nonlinear Physics Centre, Australian National University, Canberra, Australia (dragomir.neshev@anu.edu.au)
4 Director of the Center for Micro-Photonics (CMP), Swinburne University of Technology, Hawthorn, Australia (dmoss@swin.edu.au)
The field of nonlinear photonics is in full development. This special issue of Photonics Research takes you through the current issues of this fast-growing field of research, drawing on the current state of the art and seeking, through a selection of articles, to outline some trends for the future.
General Optical design and fabrication 
Photonics Research
2018, 6(5): 0500NIP1
Author Affiliations
Abstract
1 University of North Carolina at Charlotte, Department of Physics and Optical Science, Charlotte, North Carolina 28223, USA
2 University of Crete, Physics Department, 71003 Heraklion, Greece
This special issue is dedicated to the emerging field of non-Hermitian photonics of complex media, with emphasis on PT-symmetric optical structures. In particular, the papers highlight the variety of applications being considered and the ways in which non-Hermitian optics can improve their performance.
General Optical design and fabrication 
Photonics Research
2018, 6(5): 0500PTS1