Author Affiliations
Abstract
Shanghai Jiao Tong University, State Key Laboratory of Advanced Optical Communication Systems and Networks, Department of Electronic Engineering, Shanghai, China
Optical networks are evolving toward ultrawide bandwidth and autonomous operation. In this scenario, it is crucial to accurately model and control optical power evolutions (OPEs) through optical amplifiers (OAs), as they directly affect the signal-to-noise ratio and fiber nonlinearities. However, a fundamental contradiction arises between the complex physical phenomena in optical transmission and the required precision in network control. Traditional theoretical methods underperform due to ideal assumptions, while data-driven approaches entail exorbitant costs associated with acquiring massive amounts of data to achieve the desired level of accuracy. In this work, we propose a Bayesian inference framework (BIF) to construct the digital twin of OAs and control OPE in a data-efficient manner. Only the informative data are collected to balance the exploration and exploitation of the data space, thus enabling efficient autonomous-driving optical networks (ADONs). Simulations and experiments demonstrate that the BIF can reduce the data size for modeling erbium-doped fiber amplifiers by 80% and Raman amplifiers by 60%. Within 30 iterations, the optimal controlling performance can be achieved to realize target signal/gain profiles in links with different types of OAs. The results show that the BIF paves the way to accurately model and control OPE for future ADONs.
optical fiber communications digital twin Bayesian inference optical amplifiers autonomous-driving optical networks 
Advanced Photonics
2024, 6(2): 026006
汪旻 1,2乔玲玲 3方致伟 1,2林锦添 3[ ... ]程亚 1,3,*
作者单位
摘要
1 华东师范大学物理与电子科学学院极端光机电实验室,上海 200241
2 华东师范大学纳光电集成与先进装备教育部工程研究中心,上海 200241
3 中国科学院上海光学精密机械研究所强场激光物理国家重点实验室,上海 201800
光子集成器件以极低的成本和功耗实现覆盖从光源、调制、非线性频率转换、光放大到光探测的全功能单片集成,对光电信息处理系统产生显著而深远的影响,并推动一系列诸如高速通信、人工智能、量子信息,以及精密测量等重大应用领域的持续发展。近年来,铌酸锂薄膜光子器件得益于离子揭膜技术和微纳刻蚀工艺的进步,以宽的工作窗口、低的传输损耗、大的调制带宽、高的非线性光学转换效率和兼容大规模光子集成等优点,在集成光子学领域占据重要一席之地。本文介绍了利用超快激光光刻结合化学机械抛光技术在掺杂有源发光稀土离子的铌酸锂薄膜衬底上实现片上激光与光放大的最新进展,包括在波导放大器中实现了超过20 dB的最大内部净增益,并且在高品质铌酸锂微盘中演示了具有454.7 Hz窄线宽的电光可调谐单频激光器,演示了单片集成的电驱动微环激光器,以及连续光刻方式实现的无源/有源混合集成器件。
集成光学 超快激光加工 铌酸锂 光放大器 光源 稀土掺杂材料 
光学学报
2023, 43(16): 1623014
Ning Wei 1,2Xiaobo Li 1,2Jiajing He 1,2Yongtao Fan 1,2[ ... ]Jun Wang 1,2,4,5,*
Author Affiliations
Abstract
1 Laboratory of Micro-Nano Optoelectronic Materials and Devices, Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
4 CAS Center for Excellence in Ultra-intense Laser Science (CEULS), Shanghai 201800, China
5 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
The idea of a slot waveguide amplifier based on erbium-doped tellurite glass is first theoretically discussed in this work. Choosing the horizontal slot for low propagation loss, the TM mode profile compressed in the insertion layer was simulated, and the gain characteristics of the slot waveguide amplifier were calculated. Combining the capacity to confine light locally and the merits of tellurite glass as an emission host, this optimized amplifier shows enhanced interactions between the electric field and erbium ions and achieves a net gain of 15.21 dB for the 0.01 mW input light at 1530 nm, implying great promise of a high-performance device.
guided waves optical amplifiers rare-earth-doped materials 
Chinese Optics Letters
2023, 21(1): 011404
Author Affiliations
Abstract
1 Key Laboratory of Opto-electronic Information Technical Science of Ministry of Education, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
2 Fiberhome & Fujikura Optics Co., Ltd., Wuhan 430074, China
Using the few-mode erbium-doped fiber (FM-EDF) with a simple two-layer erbium-doped structure, we demonstrate an all-fiber FM-EDF amplifier. The gain equalization among the six spatial modes supported by the FM-EDF is achieved when only the pump in the fundamental mode (LP01) is applied. When the signals in six spatial modes are simultaneously amplified, the average modal gain is about 15 dB, and differential modal gain is about 2.5 dB for the signal at 1550 nm.
060.2330 Fiber optics communications 060.4230 Multiplexing 060.2410 Fibers, erbium 140.4480 Optical amplifiers 
Chinese Optics Letters
2019, 17(10): 100604
Author Affiliations
Abstract
1 Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia
2 Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia, 84600 Pagoh, Johor, Malaysia
3 Department of Physics, Shiraz University of Technology, Shiraz, Iran
The influence of the fourth-order dispersion coefficient on the behavior of parametric gain and saturation power of a one-pump fiber optical parametric amplifier over a signal wavelength span in the presence of fiber random dispersion fluctuations was investigated. The output signal power for the parametric gain calculation was obtained by numerically solving the three-coupled amplitude equations. Based on the calculations of the parametric gain over a variation of the signal wavelength, it is found that the saturation power behavior is dependent on the behavior of parametric gain. The manipulations of signal wavelength and the fourth-order dispersion coefficient changed the phase-matching condition, thereby affecting the resulting parametric gain and saturation power.
060.4370 Nonlinear optics, fibers 230.2285 Fiber devices and optical amplifiers 190.4380 Nonlinear optics, four-wave mixing 260.2030 Dispersion 
Chinese Optics Letters
2019, 17(11): 110603
Author Affiliations
Abstract
1 Shanghai Key Laboratory of Modern Optical System, and Engineering Research Center of Optical Instrument and System, Ministry of Education, School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
2 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
We demonstrate here an environmentally stable and extremely compactable Er-doped fiber laser system capable of delivering sub-100-fs temporal duration and tens of nanojoules at a repetition rate of 10 MHz. This laser source employs a semiconductor saturable absorber mirror mode-locked soliton laser to generate seed pulses. A single-mode-fiber amplifier and a double-cladding-fiber amplifier (both with double-pass configuration) are bridged by a divider and used to manage the dispersion map and boost the soliton pulses. By using 64 replicas, pulses with as high as 60 nJ energy within 95 fs duration are obtained at 10 MHz, corresponding to 600 kW peak power.
140.3500 Lasers, erbium 140.3510 Lasers, fiber 140.4480 Optical amplifiers 140.7090 Ultrafast lasers 
Chinese Optics Letters
2019, 17(6): 061401
Author Affiliations
Abstract
1 State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
To overcome the beam squint in wide instantaneous frequency, we review a number of system-level optical controlled phase array antennas for beam forming. The optical delay network based on a fiber device in terms of topological structure of an N-bit optical switch, fiber grating, high-dispersion fiber, and vector-sum technology is discussed, respectively. Lastly, an integrated circuit is simply summarized.
230.2285 Fiber devices and optical amplifiers 060.3735 Fiber Bragg gratings 100.4999 Pattern recognition, target tracking 
Chinese Optics Letters
2019, 17(5): 052301
作者单位
摘要
1 北京航天控制仪器研究所 国家惯性技术产品质检中心, 北京 100039
2 北京交通大学 理学院, 北京 100044
半导体光放大器(SOA)作为全光集成器件的核心, 在全光通信和光纤传感等领域中具有重要的应用前景。值得关注的是, 半导体光放大器的材料增益透明决定了它的快慢光过渡点和信号增益的起始点, 因此准确测量其材料增益透明对应的注入电流, 对于SOA的全面应用具有重要意义。提出了一种测量SOA材料增益透明电流的方法, 并深入分析了其特点。依据材料增益透明时SOA的输出功率与入射光偏振无关的特性, 实验测量了不同输入光功率条件下, 入射光偏振态对输出功率影响最小时, SOA的注入电流。利用上述方法, 准确地测量出给定波长输入待测SOA的增益透明电流为155mA。该方法为实现其他类型任意波长注入时SOA增益透明电流的测量提供了参考, 为其全面应用奠定了基础。
半导体光放大器 全光集成器件 材料增益透明 偏振态 semiconductor optical amplifiers all-optical integrated photonic devices material gain transparency polarization state 
半导体光电
2018, 39(6): 780
作者单位
摘要
北京航天控制仪器研究所, 北京 100039
高速调制信号的慢光技术在未来高速光通信和光信号处理等领域具有重要的应用前景。基于光滤波法, 提出了半导体光放大器(SOA)与带通滤波器串联的结构, 实现了高速调制正弦信号和归零伪随机码(RZ-PRBS)脉冲信号动态可调时延的关键技术。对于正弦信号, 当调制频率为5 GHz信号光经过光滤波结构时, 改变SOA的注入电流, 能够实现40%和-10%的基频相对延时量; 对于RZ-PRBS光脉冲信号, 波长为1549.735 nm(1550.525 nm), 脉宽为100 ps的光脉冲信号入射滤波结构, 改变SOA的注入电流, 实现脉冲包络44.6 ps(96.3 ps)的可调延时。实验数据表明, 利用所提出的光滤波结构, 通过改变SOA的注入电流, 能够实现高速调制信号的可调延时。在精确控制SOA注入电流的情况下, 该光滤波结构可用于光通信中的信号同步和比特量级的信号处理。
非线性光学 半导体光放大器 快光 慢光 
中国激光
2018, 45(10): 1006006
Author Affiliations
Abstract
1 Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. 64849, Mexico
2 CONACYT–Instituto Nacional de Astrofísica, Óptica y Electrónica, Calle Luis Enrique Erro No. 1, Sta. Ma. Tonantzintla, Pue. CP 72840, Mexico
3 Instituto Nacional de Astrofísica, Óptica y Electrónica, Calle Luis Enrique Erro No. 1, Sta. Ma. Tonantzintla, Pue. CP 72840, Mexico
We study light propagation through cyclic arrays, composed by copies of a given PT-symmetric dimer, using a group theoretical approach and finite element modeling. The theoretical mode-coupling analysis suggests the use of these devices as output port replicators where the dynamics is controlled by the impinging light field. This is confirmed in good agreement with finite element propagation in an experimentally feasible necklace of passive PT-symmetric dimers constructed from lossy and lossless waveguides.
Waveguides Guided waves Optical amplifiers Classical and quantum physics 
Photonics Research
2018, 6(5): 05000A31

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!