Author Affiliations
Abstract
MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi’an 710129, China
We propose an efficient and robust method to generate tunable vector beams by employing a single phase-type spatial light modulator (SLM). With this method, a linearly polarized Gaussian beam can be converted into a vector beam with arbitrarily controllable polarization state, phase, and amplitude. The energy loss during the conversion is greatly reduced and depends mainly on the reflectivity of the SLM. We experimentally demonstrate that conversion efficiency of about 47% is achieved by using an SLM with reflectivity of 62%. Several typical vector beams, including cylindrical vector beams, vector beams on higher order Poincaré spheres, and arbitrary vector beams attached with phases and with tunable amplitude, are generated and verified experimentally. This method is also expected to create high-power vector beams and play important roles in optical fabrication and light trapping.
Polarization Singular optics Spatial light modulators 
Photonics Research
2018, 6(4): 04000228
Author Affiliations
Abstract
1 Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060, China
2 SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, Shenzhen University, Shenzhen 518060, China
This paper reports the experimental realization of efficiently sorting vector beams by polarization topological charge (PTC). The PTC of a vector beam can be defined as the repetition number of polarization state change along the azimuthal axis, while its sign stands for the rotating direction of the polarization. Here, a couple of liquid crystal Pancharatnam–Berry optical elements (PBOEs) have been used to introduce conjugated spatial phase modulations for two orthogonal circular polarization states. Applying these PBOEs in a 4-f optical system, our experiments show the setup can work for PTC sorting with a separation efficiency of more than 58%. This work provides an effective way to decode information from different PTCs, which may be interesting in many fields, especially in optical communication.
Polarization Berry's phase Diffraction theory Multiplexing 
Photonics Research
2018, 6(5): 05000385
Author Affiliations
Abstract
Shaanxi Key Laboratory of Quantum Information and Quantum Optoelectronic Devices, School of Science, Xi’an Jiaotong University, Xi’an 710049, China
Vector beams with spatially variant polarization have attracted much attention in recent years, with potential applications in both classical optics and quantum optics. In this work, we study a polarization selection of spatial intensity distribution by utilizing a hybridly polarized beam as a coupling beam and a circularly polarized beam as a probe beam in Rb87 atom vapor. We experimentally observe that the spatial intensity distribution of the probe beam after passing through atoms can be modulated by the hybridly polarized beam due to the optical pumping effect. Then, the information loaded in the probe beam can be designedly filtrated by an atomic system with a high extinction ratio. A detailed process of the optical pumping effect in our configurations and the corresponding absorption spectra are presented to interpret our experimental results, which can be used for the spatial optical information locally extracted based on an atomic system, which has potential applications in quantum communication and computation.
Atom optics Polarization Spectroscopy, atomic 
Photonics Research
2018, 6(5): 05000451
Author Affiliations
Abstract
1 Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai 200444, China
2 School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China
We experimentally demonstrated a method of generating continuously wavelength-switchable optical vortex beams (OVBs) in an all-fiber laser. A polarization-dependent microknot resonator (MKR) functions as comb filter and accounts for the narrow linewidth (0.018 nm) of multiwavelength channels. The wavelength interval corresponds to the free spectral range of the MKR. We exploit a fused SMF–FMF (single mode fiber–few mode fiber) mode coupler to obtain broadband mode conversion and successfully achieve multiwavelength switchable OVBs. As far as we know, this is the first report about identical multiwavelength vortex beams with topological charges of ±1. It has been verified that each channel of the vortex beams preserves the same orbital angular momentum (OAM) properties through their clear spiral interferograms. Multiwavelength vortex beams with identical OAM properties are desirable for multiplexing, exchanging, and routing to further improve the capacity of optical fiber transmission.
Lasers, fiber Lasers, tunable Optical vortices Multiplexing 
Photonics Research
2018, 6(5): 05000396

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!