激光与光电子学进展, 2017, 54 (5): 050005, 网络出版: 2017-05-03  

有机聚合物光波导的研究进展 下载: 561次

Study Progress of Organic Polymeric Optical Waveguides
作者单位
华南理工大学材料科学与工程学院, 广东 广州 510641
摘要
与无机半导体光波导相比, 有机聚合物光波导具有易于加工和方便集成的明显优势。总结了有机聚合物光波导的研究现状, 包括聚合物光波导材料的分类和制备。重点总结了聚合物平面波导和聚合物微结构光纤波导的应用现状。对聚合物光波导的前景进行了展望, 并提出了一些建议。
Abstract
Compared with inorganic semiconductor optical waveguides, organic polymer waveguides have obvious advantages such as easy processing and convenient integration. Research status of organic polymer optical waveguides is summarized, where the material classification and the fabrication of polymer optical waveguides are included. The application status of polymer planar optical waveguides and polymer microstructured fiber waveguides is mainly summarized. The prospect of polymer optical waveguides is discussed, and some suggestions are put forward.
参考文献

[1] Yoshimura R, Hikita M, Tomaru S, et al. Low-loss polymeric optical waveguides fabricated with deuterated polyfluoromethacrylate[J]. Journal of Lightwave Technology, 1998, 16(6): 1030-1037.

[2] Maruno T, Matsuura T, Ando S, et al. Single-mode optical waveguide fabricated using fluorinated polyimides[J]. Nonlinear Optics, 1996, 15(1-4): 485-488.

[3] Wang L D, Zhang T, Li R Z, et al. Synthesis and characterization of cross-linkable fluorinated polyimide for optical waveguide[J]. Applied Physics A, 2015, 118(2): 655-664.

[4] Lee H J, Lee E M, Lee M H, et al. Crosslinkable fluorinated poly (arylene ethers) bearing phenyl ethynyl moiety for low-loss polymer optical waveguide devices[J]. Journal of Polymer Science, Part A: Polymer Chemistry, 1998, 36(16): 2881-2887.

[5] Qi Y H, Ding J F, Day M, et al. Cross-linkable highly fluorinated poly (arylene ether ketones/sulfones) for optical wave guiding applications[J]. Chemistry of Materials, 2005, 17(3): 676-682.

[6] 张军志. 非水解溶胶-凝胶法制备液态PSQ光波导材料[D]. 大连: 大连理工大学, 2010.

    Zhang Junzhi. Synthesis of liquid PSQ used as optical waveguide materials by non-hydrolytic sol-gel technology[D]. Dalian: Dalian University of Technology, 2010.

[7] Tung K K, Wong W H, Pun E Y B. Polymeric optical waveguides using direct ultraviolet photolithography process[J]. Applied Physics A, 2005, 80(3): 621-626.

[8] Zhao X L, Yue Y B, Liu T, et al. Optimized design and fabrication of nanosecond response electro optic switch based on ultraviolet-curable polymers[J]. Chinese Physics B, 2015, 24(4): 184-192.

[9] Cabanetos C, Mahé H, Blart E, et al. Preparation of a new electro-optic polymer cross-linkable via copper-free thermal Huisgen cyclo-addition and fabrication of optical waveguides by reactive ion etching[J]. ACS Applied Materials & Interfaces, 2011, 3(6): 2092-2098.

[10] Singhal A R, Satyanarayan M N, Pal S. Fabrication of monomode channel waveguides in photosensitive polymer on optical adhesive[J]. Optical Engineering, 2011, 50(9): 094601.

[11] Kruse K, Peng J, Middlebrook C T. Laser direct writing of complex radially varying single-mode polymer waveguide structures[J]. Journal of Micro/ Nanolithography Mems & Moems, 2015, 14(3): 034502.

[12] 董明明, 林 耿, 赵全忠. 飞秒激光在透明介质中制备波导器件进展[J]. 激光与光电子学进展, 2013, 50(1): 010002.

    Dong Mingming, Lin Geng, Zhao Quanzhong. Progress on femtosecond laser-fabricated waveguide devices in transparent dielectrics[J]. Laser & Optoelectronics Progress, 2013, 50(1): 010002.

[13] Patzold W M, Reinhardt C, Demircan A, et al. Cascaded-focus laser writing of low-loss waveguides in polymers[J]. Optics Letters, 2016, 41(6): 1269-1272.

[14] 周 彬. 飞秒激光多光子微加工技术的研究[D]. 天津: 天津大学, 2009.

    Zhou Bin. Femtosecond laser multi-photon micromachining[D]. Tianjin: Tianjin University, 2009.

[15] Amirsolaimani B, Herrera O D, Himmelhuber R, et al. Electro-optic polymer channel waveguide fabrication using multiphoton direct laser writing[C]. IEEE Optical Interconnects Conference, 2015: 104-105.

[16] Sun H S, Chen A T, Olbricht B C, et al. Polarization selective electro-optic polymer waveguide devices by direct electron beam writing[J]. Optics Express, 2008, 16(12): 8472-8479.

[17] Jiang G M, Baig S, Wang M R. Flexible polymer waveguides with integrated mirrors fabricated by soft lithography for optical interconnection[J]. Journal of Lightwave Technology, 2013, 31(11): 1835-1841.

[18] Large M, Poladian L, Barton G, et al. Microstructured polymer optical fibres[M]. US: Springer, 2008: 83-110.

[19] Barton G, van Eijkelenborg M A, Henry G, et al. Fabrication of microstructured polymer optical fibres[J]. Optical Fiber Technology, 2004, 10(4): 325-335.

[20] Wang J, Wang L. Carbon dioxide gas sensor derived from a 547-hole microstructured polymer optical fiber perform[J]. Optics Letters, 2010, 16(35): 3270-3272.

[21] Zhang Y N, Li K, Wang L L, et al. Casting preforms for microstructured polymer optical fibre fabrication[J]. Optics Express, 2006, 14(12): 5541-5547.

[22] Matsuoka Y, Adachi K, Lee Y, et al. A 25-G bit/s high-speed optical-electrical printed circuit board for chip-to-chip optical interconnections[C]. IEEE CPMT Symposium Japan, 2012: 1-4.

[23] 吴金华, Marika Immonen, 严惠娟, 等. 多模聚合物波导在光电印制板中的应用[J]. 电子工艺技术, 2015, 36(5): 291-294.

    Wu Jinhua, Marika Immonen, Yan Huijuan, et al. Application of multimode polymer waveguide in optical-electrical printed circuit board[J]. Electronics Process Technology, 2015, 36(5): 291-294.

[24] Jia K, Wang W, Tang Y, et al. Silicon-on-insulator-based optical demultiplexer employing turning-mirror-integrated arrayed-waveguide grating[J]. IEEE Photonics Technology Letters, 2005, 17(2): 378-380.

[25] Chen C M, Wang H, Wang L, et al. Athermal polarization-independent 49-channel UV curable all-polymer arrayed waveguide grating (AWG) multiplexer[J]. Optik, 2015, 125(1): 521-525.

[26] Cao T L, Zhao F Y, Da Z L, et al. A novel graphene oxide-polyimide as optical waveguide material: Synthesis and thermo-optic switch properties[J]. Optical Materials, 2016, 60: 45-49.

[27] Wang X B, Jiang M H, Sun S Q, et al. Demonstration of a high-speed electro-optic switch with passive-to-active integrated waveguide based on SU-8 material[J]. RSC Advances, 2016, 6(55): 50166-50172.

[28] 胡国华, 恽斌峰, 崔一平. 有机聚合物1×32波导热光开关阵列[J]. 光电子·激光, 2015, 26(10): 1873-1877.

    Hu Guohua, Yun Binfeng, Cui Yiping. Polymer 1×32 waveguide thermo-optical switch array[J]. Journal of Optoelectronics·Laser, 2015, 26(10): 1873-1877.

[29] Tsang K C, Wong C Y, Pun E Y B. Eu3+-doped planar optical polymer waveguide amplifiers[J]. IEEE Photonics Technology Letters, 2010, 22(14): 1024-1026.

[30] 尹 姣, 曲春阳, 张美玲, 等. 基于铒镱共掺纳米晶的聚合物光波导放大器的增益特性[J]. 光学学报, 2015, 35(12): 1216001.

    Yin Jiao, Qu Chunyang, Zhang Meiling, et al. Gain characteristics of polymer waveguide amplifiers based on Er3+, Yb3+ co-doped nanocrystals[J]. Acta Optica Sinica, 2015, 35(12): 1216001.

[31] Ren N F, Sun B, Chen M Y. Label-free optical biosensor based on a dual-core microstructured polymer optical fiber[J]. Optik, 2015, 126(21): 2930-2933.

[32] 孔德鹏. 微结构光学元器件的设计、制作与应用关键技术研究[D]. 西安: 中国科学院西安光学精密机械研究所, 2013.

    Kong Depeng. Design, fabrication and applications of microstructured optical elements and devices[D]. Xi′an: Xi′an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences, 2013.

[33] 姬江军. 太赫兹波导系统中关键器件的初步研究[D]. 西安: 中国科学院西安光学精密机械研究所, 2013.

    Ji Jiangjun. Preliminary study of the key components in terahertz waveguide system[D]. Xi′an: Xi′an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences, 2013.

侯有军. 有机聚合物光波导的研究进展[J]. 激光与光电子学进展, 2017, 54(5): 050005. Hou Youjun. Study Progress of Organic Polymeric Optical Waveguides[J]. Laser & Optoelectronics Progress, 2017, 54(5): 050005.

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!