激光与光电子学进展, 2020, 57 (11): 111409, 网络出版: 2020-06-02   

医用锆基块体非晶合金飞秒激光加工表面特性研究 下载: 1164次

Surface Characteristics of Medical Zr-Based Bulk Metallic Glass Processed by Femtosecond Laser
作者单位
1 安徽建筑大学机械与电气工程学院, 安徽 合肥 230601
2 中国科学技术大学微纳米工程实验室, 安徽 合肥 230022
3 安徽省工程机械智能制造重点实验室, 安徽 合肥 230601
引用该论文

姚燕生, 葛张森, 陈庆波, 唐建平, 张亦元. 医用锆基块体非晶合金飞秒激光加工表面特性研究[J]. 激光与光电子学进展, 2020, 57(11): 111409.

Yansheng Yao, Zhangsen Ge, Qingbo Chen, Jianping Tang, Yiyuan Zhang. Surface Characteristics of Medical Zr-Based Bulk Metallic Glass Processed by Femtosecond Laser[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111409.

参考文献

[1] Asgharzadeh Shirazi H, Ayatollahi M R, Asnafi A. To reduce the maximum stress and the stress shielding effect around a dental implant-bone interface using radial functionally graded biomaterials[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20(7): 750-759.

[2] Li H F, Zheng Y F. Recent advances in bulk metallic glasses for biomedical applications[J]. Acta Biomaterialia, 2016, 36: 1-20.

[3] Schulze C, Weinmann M, Schweigel C, et al. Mechanical properties of a newly additive manufactured implant material based on Ti-42Nb[J]. Materials, 2018, 11(1): 124.

[4] Ida H, Seiryu M, Takeshita N, et al. Biosafety, stability, and osteogenic activity of novel implants made of Zr70Ni16Cu6Al8 bulk metallic glass for biomedical application[J]. Acta Biomaterialia, 2018, 74: 505-517.

[5] 虞宙, 张文杰, 胡俊. 皮秒激光对医用钛合金植入物表面微加工及生物相容性的研究[J]. 中国激光, 2017, 44(1): 0102014.

    Yu Z, Zhang W J, Hu J. Micromachining of titanium alloy implant by picosecond laser surface texturing and alloy biocompatibility[J]. Chinese Journal of Lasers, 2017, 44(1): 0102014.

[6] 黄润, 王庆平, 张兰, 等. 钛合金表面微粗糙化对成骨细胞黏附及增殖行为的影响[J]. 材料导报, 2017, 31(13): 156-159.

    Huang R, Wang Q P, Zhang L, et al. Effect of surface microroughening of titanium alloy on osteoblast adhesion and proliferation behavior[J]. Materials Review, 2017, 31(13): 156-159.

[7] Chen J C, Ko C L, Lin D J, et al. In vivo studies of titanium implant surface treatment by sandblasted, acid-etched and further anchored with ceramic of tetracalcium phosphate on osseointegration[J]. Journal of the Australian Ceramic Society, 2019, 55(3): 799-806.

[8] 冯爱玲, 憨勇. 生物医用镁的表面处理技术研究进展[J]. 化工进展, 2011, 30(8): 1778-1784.

    Feng A L, Han Y. Research progress of surface modification of biomedical magnesium[J]. Chemical Industry and Engineering Progress, 2011, 30(8): 1778-1784.

[9] 明增, 崔春娟, 杨洪波. 医用NiTi形状记忆合金表面氧化改性研究进展[J]. 材料导报, 2018, 32(7): 1181-1186.

    Shao M Z, Cui C J, Yang H B. Surface oxidation as the modification technique of NiTi shape memory alloys for medical application: a technological review[J]. Materials Review, 2018, 32(7): 1181-1186.

[10] 孙桂芳, 陶丰, 姜波, 等. 医用不锈钢激光合金化铜钴合金的组织及其生物医学性能[J]. 中国激光, 2018, 45(12): 1202008.

    Sun G F, Tao F, Jiang B, et al. Microstructure andbiomedical properties of laser alloyed Cu-Co alloys on medical stainless steel[J]. Chinese Journal of Lasers, 2018, 45(12): 1202008.

[11] 卢立斌, 王海鹏, 管迎春, 等. 激光微加工技术制备生物医用器械的现状与进展[J]. 中国激光, 2017, 44(1): 0102005.

    Lu L B, Wang H P, Guan Y C, et al. Laser microfabrication of biomedical devices[J]. Chinese Journal of Lasers, 2017, 44(1): 0102005.

[12] Miyauchi T, Yamada M, Yamamoto A, et al. The enhanced characteristics of osteoblast adhesion to photofunctionalized nanoscale TiO2 layers on biomaterials surfaces[J]. Biomaterials, 2010, 31(14): 3827-3839.

[13] 杨奇彪, 陈中培, 杨涛, 等. 飞秒激光加工YG6不同微织构表面浸润性研究[J]. 激光与光电子学进展, 2018, 55(9): 091404.

    Yang Q B, Chen Z P, Yang T, et al. Surface wettability of different micro-textured YG6 processed by femtosecond lasers[J]. Laser & Optoelectronics Progress, 2018, 55(9): 091404.

[14] 马国峰. 非晶态合金及表面润湿性[M]. 沈阳: 东北大学出版社, 2010.

    Ma GF. Metallic glass and wettability of surface[M]. Shenyang: Northeastern University Press, 2010.

[15] 邱亚军, 李金泽, 李传宇, 等. 高通量数字化毛细管微阵列芯片[J]. 光学精密工程, 2019, 27(6): 1237-1244.

    Qiu Y J, Li J Z, Li C Y, et al. High-throughput digital capillary microarray[J]. Optics and Precision Engineering, 2019, 27(6): 1237-1244.

[16] Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta Materialia, 2000, 48(1): 279-306.

[17] Li J, Shi L L, Zhu Z D, et al. Zr61Ti2Cu25Al12 metallic glass for potential use in dental implants: biocompatibility assessment by in vitro cellular responses[J]. Materials Science and Engineering: C, 2013, 33(4): 2113-2121.

[18] 王晨玥. 钛基植入体材料表面生物活化处理研究[D]. 南京: 南京航空航天大学, 2015.

    Wang CY. Research of surface bioactivation on titanium substrate implant[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015.

[19] 刘杰, 薛祥义. Ti-42Al-8Nb合金氧化膜的XPS研究[J]. 稀有金属材料与工程, 2016, 45(10): 2635-2641.

    Liu J, Xue X Y. XPS study on oxidation scale of Ti-42Al-8Nb TiAl alloys[J]. Rare Metal Materials and Engineering, 2016, 45(10): 2635-2641.

[20] Velayi E, Norouzbeigi R. Annealing temperature dependent reversible wettability switching of micro/nano structured ZnO superhydrophobic surfaces[J]. Applied Surface Science, 2018, 441: 156-164.

[21] 廖聪豪, 周静, 沈洪. 增材制造TC4钛合金在激光抛光前后的电化学腐蚀性能[J]. 中国激光, 2020, 47(1): 0102003.

    Liao C H, Zhou J, Shen H. Electrochemical corrosion behaviors before and after laser polishing of additive manufactured TC4 titanium alloy[J]. Chinese Journal of Lasers, 2020, 47(1): 0102003.

[22] 吴宏. Zr基块体非晶合金室温塑性变形与摩擦磨损行为研究[D]. 长沙: 中南大学, 2011.

    WuH. Room temperature plasticity and tribological behavior of Zr-based bulk metallic glass[D]. Changsha: Central South University, 2011.

姚燕生, 葛张森, 陈庆波, 唐建平, 张亦元. 医用锆基块体非晶合金飞秒激光加工表面特性研究[J]. 激光与光电子学进展, 2020, 57(11): 111409. Yansheng Yao, Zhangsen Ge, Qingbo Chen, Jianping Tang, Yiyuan Zhang. Surface Characteristics of Medical Zr-Based Bulk Metallic Glass Processed by Femtosecond Laser[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111409.

本文已被 3 篇论文引用
被引统计数据来源于中国光学期刊网
引用该论文: TXT   |   EndNote

相关论文

加载中...

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!